We present an algorithm for concept combination inspired and informed by the research in cognitive and experimental psychology. Dealing with concept combination requires, from a symbolic AI perspective, to cope with competitive needs: The need for compositionality and the need to account for typicality effects. Building on our previous work on weighted logic, the proposed algorithm can be seen as a step towards the management of both these needs. More precisely, following a proposal of Hampton [1], it combines two weighted Description Logic formulas, each defining a concept, using the following general strategy. First it selects all the features needed for the combination, based on the logical distinction between necessary and impossible features. Second, it determines the threshold and assigns new weights to the features of the combined concept trying to preserve the relevance and the necessity of the features. We illustrate how the algorithm works exploiting some paradigmatic examples discussed in the cognitive literature.

Concept combination inweighted logic

Porello D.
2021-01-01

Abstract

We present an algorithm for concept combination inspired and informed by the research in cognitive and experimental psychology. Dealing with concept combination requires, from a symbolic AI perspective, to cope with competitive needs: The need for compositionality and the need to account for typicality effects. Building on our previous work on weighted logic, the proposed algorithm can be seen as a step towards the management of both these needs. More precisely, following a proposal of Hampton [1], it combines two weighted Description Logic formulas, each defining a concept, using the following general strategy. First it selects all the features needed for the combination, based on the logical distinction between necessary and impossible features. Second, it determines the threshold and assigns new weights to the features of the combined concept trying to preserve the relevance and the necessity of the features. We illustrate how the algorithm works exploiting some paradigmatic examples discussed in the cognitive literature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1105679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact