This paper investigates the integration of Concentrating Solar Power technology in air-steam Mixed Cycles for power production. Starting from a state of the art of CSP plants and the undergoing research in hybridization of Gas Turbine plants, the paper investigates alternative plant configurations particularly regarding the integration of CSP technology with mixed cycles, assessed and compared with a through-life thermo-economic analysis. Solar heat collected by on the market CSP mirrors at moderate temperatures (300°C-500°C) can be employed to increase conventional steam-injection gas turbine power plants performances. Solar concentrating collectors for current steam solar power plants can be used for such an application can be simpler and less expensive than collectors supposed to be used for hybrid GT CSP Plants which need high temperature systems (collectors and receivers). The solar hybridization of mixed cycles could be a good opportunity to combine gas turbine technology and CSP systems thus augmenting efficiency and achieving power dispatchability, but avoiding dedicated combustion chambers for hybrid CSP purposes (one of the big technologic problems to combine CSP and Gas Turbine technology). Moreover, the availability of commercial steam injected gas turbines at intermediate power range (10-100MW) allows the realization of such hybrid mixed CSP power plants in their typical size, avoiding the need for very large solar fields and reducing the technological risk as well as the time to market. Focus is on the design of the plant that was made analyzing different factor like solar share factor1, water consumption and reintegration and LCOE. A comparison of this innovative hybrid CSP-STIG plant with traditional STIG, Integrated Solar Combined Cycles (ISCC) and a traditional Combined Cycle was made. The mixed cycles CSP plants are analyzed using the original software WTEMP for the design point analysis, whose library was updated with dedicated modules. The analysis shows that combining CSP technology with existing mixed cycles lets cost-competitive plant configurations with a relatively short time to market.

Thermoeconomic analysis of csp air-Steam mixed cycles

Barberis S.;Traverso A.
2015-01-01

Abstract

This paper investigates the integration of Concentrating Solar Power technology in air-steam Mixed Cycles for power production. Starting from a state of the art of CSP plants and the undergoing research in hybridization of Gas Turbine plants, the paper investigates alternative plant configurations particularly regarding the integration of CSP technology with mixed cycles, assessed and compared with a through-life thermo-economic analysis. Solar heat collected by on the market CSP mirrors at moderate temperatures (300°C-500°C) can be employed to increase conventional steam-injection gas turbine power plants performances. Solar concentrating collectors for current steam solar power plants can be used for such an application can be simpler and less expensive than collectors supposed to be used for hybrid GT CSP Plants which need high temperature systems (collectors and receivers). The solar hybridization of mixed cycles could be a good opportunity to combine gas turbine technology and CSP systems thus augmenting efficiency and achieving power dispatchability, but avoiding dedicated combustion chambers for hybrid CSP purposes (one of the big technologic problems to combine CSP and Gas Turbine technology). Moreover, the availability of commercial steam injected gas turbines at intermediate power range (10-100MW) allows the realization of such hybrid mixed CSP power plants in their typical size, avoiding the need for very large solar fields and reducing the technological risk as well as the time to market. Focus is on the design of the plant that was made analyzing different factor like solar share factor1, water consumption and reintegration and LCOE. A comparison of this innovative hybrid CSP-STIG plant with traditional STIG, Integrated Solar Combined Cycles (ISCC) and a traditional Combined Cycle was made. The mixed cycles CSP plants are analyzed using the original software WTEMP for the design point analysis, whose library was updated with dedicated modules. The analysis shows that combining CSP technology with existing mixed cycles lets cost-competitive plant configurations with a relatively short time to market.
2015
978-0-7918-5667-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1101216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact