Design For Assembly (DFA) aims at improving product design facilitating assembly phases via the application of evaluation metrics and design guidelines. However, DFA analyses are usually performed manually and the adoption of supporting tool is poor. This paper investigates the application of algorithms allowing to extract from CAD assembly models the required data to perform automated DFA analyses, thus providing a tool to support designers’ everyday works. In particular, attributes from geometric feature recognition algorithms, solids properties and assembly parts’ semantics are leveraged and mapped to the parameters required to accomplish DFA evaluations. The proposed approach is illustrated on a 3D printer for home use. At first, a manual DFA analysis has been performed on the product identifying product BOM, components properties, assembly cycle and times according to models in the literature. Then, the CAD model of the printer has been processed with some geometric algorithms to verify the possibility to extract the required data to be used as input to the DFA analysis. The test case has demonstrated the feasibility of the approach, even if some design considerations and improvement directions still need the critical evaluation of the designer.

Geometric Analysis of Product CAD Models to Support Design for Assembly

Bonino B.;Berselli G.
2022-01-01

Abstract

Design For Assembly (DFA) aims at improving product design facilitating assembly phases via the application of evaluation metrics and design guidelines. However, DFA analyses are usually performed manually and the adoption of supporting tool is poor. This paper investigates the application of algorithms allowing to extract from CAD assembly models the required data to perform automated DFA analyses, thus providing a tool to support designers’ everyday works. In particular, attributes from geometric feature recognition algorithms, solids properties and assembly parts’ semantics are leveraged and mapped to the parameters required to accomplish DFA evaluations. The proposed approach is illustrated on a 3D printer for home use. At first, a manual DFA analysis has been performed on the product identifying product BOM, components properties, assembly cycle and times according to models in the literature. Then, the CAD model of the printer has been processed with some geometric algorithms to verify the possibility to extract the required data to be used as input to the DFA analysis. The test case has demonstrated the feasibility of the approach, even if some design considerations and improvement directions still need the critical evaluation of the designer.
2022
978-3-031-15927-5
978-3-031-15928-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1099138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact