This paper presents the structural analysis of San Carlo Borromeo church, a masonry building located in Cassingheno (Genoa, Italy) in an area affected by a slow-moving landslide. A deep knowledge of the building in terms of geometry, structural configuration, history and construction phases was acquired by means of on-site surveys and archival research. The crack patterns were surveyed in detail and the deformations were studied through a point cloud obtained from a LIDAR survey. The comparison between the landslide direction and the damage observed showed discrepancies and suggested the presence of foundation settlements due to other phenomena. To identify the actual causes of damage, a finite element model (FEM) of the building in its hypothetical undeformed configuration was created. The geometry of such configuration was reconstructed starting from the point cloud obtained from the LIDAR survey and removing geometrical defects such as leaning of walls, deformation of vaults and inclination of tie-rods. To simulate the effects produced by the landslide and the foundation settlements on the building over time, nonlinear analyses were performed by imposing different displacement fields at the foundation plane in multiple steps. The damage predicted numerically was then compared with the one experienced by the building, showing good agreement.
Effect of slow-moving landslides on a vaulted masonry building: The case of San Carlo Borromeo church in Cassingheno (Genova)
Sacco, G. L. S.;Ferrero, C.;Calderini, C.;Battini, C.;Vecchiattini, R.
2022-01-01
Abstract
This paper presents the structural analysis of San Carlo Borromeo church, a masonry building located in Cassingheno (Genoa, Italy) in an area affected by a slow-moving landslide. A deep knowledge of the building in terms of geometry, structural configuration, history and construction phases was acquired by means of on-site surveys and archival research. The crack patterns were surveyed in detail and the deformations were studied through a point cloud obtained from a LIDAR survey. The comparison between the landslide direction and the damage observed showed discrepancies and suggested the presence of foundation settlements due to other phenomena. To identify the actual causes of damage, a finite element model (FEM) of the building in its hypothetical undeformed configuration was created. The geometry of such configuration was reconstructed starting from the point cloud obtained from the LIDAR survey and removing geometrical defects such as leaning of walls, deformation of vaults and inclination of tie-rods. To simulate the effects produced by the landslide and the foundation settlements on the building over time, nonlinear analyses were performed by imposing different displacement fields at the foundation plane in multiple steps. The damage predicted numerically was then compared with the one experienced by the building, showing good agreement.File | Dimensione | Formato | |
---|---|---|---|
Sacco et al. 2022_online.pdf
accesso aperto
Descrizione: Contributo in atti di convegno
Tipologia:
Documento in versione editoriale
Dimensione
910.25 kB
Formato
Adobe PDF
|
910.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.