Random Subspace Method (RSM) has been demonstrated as an effective framework for gait recognition. Through combining a large number of weak classifiers, the generalization errors can be greatly reduced. Although RSM-based gait recognition system is robust to a large number of covariate factors, it is, in essence an unimodal biometric system and has the limitations when facing extremely large intra-class variations. One of the major challenges is the elapsed time covariate, which may affect the human walking style in an unpredictable manner. To tackle this challenge, in this paper we propose a multimodal-RSM framework, and side face is used to strengthen the weak classifiers without compromising the generalization power of the whole system. We evaluate our method on the TUM-GAID dataset, and it significantly outperforms other multimodal methods. Specifically, our method achieves very competitive results for tackling the most challenging elapsed time covariate, which potentially also includes the changes in shoe, carrying status, clothing, lighting condition, etc.

Combining gait and face for tackling the elapsed time challenges

ROLI, FABIO;
2013-01-01

Abstract

Random Subspace Method (RSM) has been demonstrated as an effective framework for gait recognition. Through combining a large number of weak classifiers, the generalization errors can be greatly reduced. Although RSM-based gait recognition system is robust to a large number of covariate factors, it is, in essence an unimodal biometric system and has the limitations when facing extremely large intra-class variations. One of the major challenges is the elapsed time covariate, which may affect the human walking style in an unpredictable manner. To tackle this challenge, in this paper we propose a multimodal-RSM framework, and side face is used to strengthen the weak classifiers without compromising the generalization power of the whole system. We evaluate our method on the TUM-GAID dataset, and it significantly outperforms other multimodal methods. Specifically, our method achieves very competitive results for tackling the most challenging elapsed time covariate, which potentially also includes the changes in shoe, carrying status, clothing, lighting condition, etc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1093455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 0
social impact