In this paper, the error-reject trade-off of linearly combined multiple classifiers is analysed in the framework of the minimum risk theory. Theoretical analysis described in [12,13] is extended for handling reject option and the optimality of the error-reject trade-off is analysed under the assumption of independence among the errors of the individual classifiers. Improvements of the error-reject trade-off obtained by linear classifier combination are quantified. Finally, a method for computing the coefficients of the linear combination and the value of the reject threshold is proposed. Experimental results on four different data sets are reported.

Error rejection in linearly combined multiple classifiers

ROLI, FABIO
2001-01-01

Abstract

In this paper, the error-reject trade-off of linearly combined multiple classifiers is analysed in the framework of the minimum risk theory. Theoretical analysis described in [12,13] is extended for handling reject option and the optimality of the error-reject trade-off is analysed under the assumption of independence among the errors of the individual classifiers. Improvements of the error-reject trade-off obtained by linear classifier combination are quantified. Finally, a method for computing the coefficients of the linear combination and the value of the reject threshold is proposed. Experimental results on four different data sets are reported.
2001
978-3-540-42284-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1087066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact