It has been argued that Artificial Intelligence (AI) is experiencing a fast process of commodification. Such characterization is on the interest of big IT companies, but it correctly reflects the current industrialization of AI. This phenomenon means that AI systems and products are reaching the society at large and, therefore, that societal issues related to the use of AI and Machine Learning (ML) cannot be ignored any longer. Designing ML models from this human-centered perspective means incorporating human-relevant requirements such as safety, fairness, privacy, and interpretability, but also considering broad societal issues such as ethics and legislation. These are essential aspects to foster the acceptance of ML-based technologies, as well as to ensure compliance with an evolving legislation concerning the impact of digital technologies on ethically and privacy sensitive matters. The ESANN special session for which this tutorial acts as an introduction aims to showcase the state of the art on these increasingly relevant topics among ML theoreticians and practitioners. For this purpose, we welcomed both solid contributions and preliminary relevant results showing the potential, the limitations and the challenges of new ideas, as well as refinements, or hybridizations among the different fields of research, ML and related approaches in facing real-world problems involving societal issues.

Societal issues in machine learning: When learning from data is not enough

Biggio B.;Oneto L.;
2019

Abstract

It has been argued that Artificial Intelligence (AI) is experiencing a fast process of commodification. Such characterization is on the interest of big IT companies, but it correctly reflects the current industrialization of AI. This phenomenon means that AI systems and products are reaching the society at large and, therefore, that societal issues related to the use of AI and Machine Learning (ML) cannot be ignored any longer. Designing ML models from this human-centered perspective means incorporating human-relevant requirements such as safety, fairness, privacy, and interpretability, but also considering broad societal issues such as ethics and legislation. These are essential aspects to foster the acceptance of ML-based technologies, as well as to ensure compliance with an evolving legislation concerning the impact of digital technologies on ethically and privacy sensitive matters. The ESANN special session for which this tutorial acts as an introduction aims to showcase the state of the art on these increasingly relevant topics among ML theoreticians and practitioners. For this purpose, we welcomed both solid contributions and preliminary relevant results showing the potential, the limitations and the challenges of new ideas, as well as refinements, or hybridizations among the different fields of research, ML and related approaches in facing real-world problems involving societal issues.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1086660
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact