In railway networks, stations are probably the most critical points for interconnecting trains’ routes: in a restricted geographical area, a potentially large number of trains have to stop according to an official timetable, with the concrete risk of accumulating delays that can then have a knockout effect on the rest of the network. In this context, in-station train dispatching plays a central role in maximising the effective utilisation of available railway infrastructures and in mitigating the impact of incidents and delays. Unfortunately, in-station train dispatching is still largely handled manually by human operators in charge of a group of stations. In this paper we make a step towards supporting the operator with some automatic tool, by describing an approach for performing in-station dispatching by means of automated planning techniques. Given the mixed discrete-continuous nature of the problem, we employ PDDL+ for the specification of the problem, and the ENHSP planning engine enhanced by domain-specific solving techniques. Results on a range of scenarios, using real-data of a station of the North West of Italy, show the potential of our approach.

In-Station Train Dispatching: A PDDL+ Planning Approach

Cardellini M.;Maratea M.;Vallati M.;Boleto G.;Oneto L.
2021-01-01

Abstract

In railway networks, stations are probably the most critical points for interconnecting trains’ routes: in a restricted geographical area, a potentially large number of trains have to stop according to an official timetable, with the concrete risk of accumulating delays that can then have a knockout effect on the rest of the network. In this context, in-station train dispatching plays a central role in maximising the effective utilisation of available railway infrastructures and in mitigating the impact of incidents and delays. Unfortunately, in-station train dispatching is still largely handled manually by human operators in charge of a group of stations. In this paper we make a step towards supporting the operator with some automatic tool, by describing an approach for performing in-station dispatching by means of automated planning techniques. Given the mixed discrete-continuous nature of the problem, we employ PDDL+ for the specification of the problem, and the ENHSP planning engine enhanced by domain-specific solving techniques. Results on a range of scenarios, using real-data of a station of the North West of Italy, show the potential of our approach.
File in questo prodotto:
File Dimensione Formato  
C2.pdf

accesso aperto

Descrizione: Contributo in atti di convegno
Tipologia: Documento in Post-print
Dimensione 997.08 kB
Formato Adobe PDF
997.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1086626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact