In-station train dispatching is the problem of optimising the effective utilisation of available railway infrastructures for mitigating incidents and delays. This is a fundamental problem for the whole railway network efficiency, and in turn for the transportation of goods and passengers, given that stations are among the most critical points in networks since a high number of interconnections of trains’ routes holds therein. Despite such importance, nowadays in-station train dispatching is mainly managed manually by human operators. In this paper we present a framework for solving in-station train dispatching problems, to support human operators in dealing with such task. We employ automated planning languages and tools for solving the task: PDDL+ for the specification of the problem, and the ENHSP planning engine, enhanced by domain-specific techniques, for solving the problem. We carry out a in-depth analysis using real data of a station of the North West of Italy, that shows the effectiveness of our approach and the contribution that domain-specific techniques may have in efficiently solving the various instances of the problem. Finally, we also present a visualisation tool for graphically inspecting the generated plans.

An Efficient Hybrid Planning Framework for In-Station Train Dispatching

Cardellini M.;Maratea M.;Vallati M.;Boleto G.;Oneto L.
2021-01-01

Abstract

In-station train dispatching is the problem of optimising the effective utilisation of available railway infrastructures for mitigating incidents and delays. This is a fundamental problem for the whole railway network efficiency, and in turn for the transportation of goods and passengers, given that stations are among the most critical points in networks since a high number of interconnections of trains’ routes holds therein. Despite such importance, nowadays in-station train dispatching is mainly managed manually by human operators. In this paper we present a framework for solving in-station train dispatching problems, to support human operators in dealing with such task. We employ automated planning languages and tools for solving the task: PDDL+ for the specification of the problem, and the ENHSP planning engine, enhanced by domain-specific techniques, for solving the problem. We carry out a in-depth analysis using real data of a station of the North West of Italy, that shows the effectiveness of our approach and the contribution that domain-specific techniques may have in efficiently solving the various instances of the problem. Finally, we also present a visualisation tool for graphically inspecting the generated plans.
2021
978-3-030-77960-3
978-3-030-77961-0
File in questo prodotto:
File Dimensione Formato  
C090.pdf

accesso aperto

Descrizione: Contributo in atti di convegno
Tipologia: Documento in Post-print
Dimensione 3.83 MB
Formato Adobe PDF
3.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1086624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact