In adversarial classification tasks like spam filtering, intrusion detection in computer networks, and biometric identity verification, malicious adversaries can design attacks which exploit vulnerabilities of machine learning algorithms to evade detection, or to force a classification system to generate many false alarms, making it useless. Several works have addressed the problem of designing robust classifiers against these threats, although mainly focusing on specific applications and kinds of attacks. In this work, we propose a model of data distribution for adversarial classification tasks, and exploit it to devise a general method for designing robust classifiers, focusing on generative classifiers. Our method is then evaluated on two case studies concerning biometric identity verification and spam filtering.

Design of robust classifiers for adversarial environments

ROLI, FABIO
2011-01-01

Abstract

In adversarial classification tasks like spam filtering, intrusion detection in computer networks, and biometric identity verification, malicious adversaries can design attacks which exploit vulnerabilities of machine learning algorithms to evade detection, or to force a classification system to generate many false alarms, making it useless. Several works have addressed the problem of designing robust classifiers against these threats, although mainly focusing on specific applications and kinds of attacks. In this work, we propose a model of data distribution for adversarial classification tasks, and exploit it to devise a general method for designing robust classifiers, focusing on generative classifiers. Our method is then evaluated on two case studies concerning biometric identity verification and spam filtering.
2011
978-1-4577-0652-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1086387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 55
social impact