Multiple classifier systems have been originally proposed for supervised classification tasks, and few works have dealt with semi-supervised multiple classifiers. However, there are important pattern recognition applications, such as multi-sensor remote sensing and multi-modal biometrics, which demand semi-supervised multiple classifier systems able to exploit both labelled and unlabelled data. In this paper, the use, in multiple classifier systems, of two well known semi-supervised learning methods, namely, co-training and self-training, is investigated by experiments. Reported results on benchmarking data sets show that co-training and self-training allow exploiting unlabelled data in different types of multiple classifiers systems.
Using Co-training and Self-training in Semi-Supervised Multiple Classifier Systems
ROLI, FABIO
2006-01-01
Abstract
Multiple classifier systems have been originally proposed for supervised classification tasks, and few works have dealt with semi-supervised multiple classifiers. However, there are important pattern recognition applications, such as multi-sensor remote sensing and multi-modal biometrics, which demand semi-supervised multiple classifier systems able to exploit both labelled and unlabelled data. In this paper, the use, in multiple classifier systems, of two well known semi-supervised learning methods, namely, co-training and self-training, is investigated by experiments. Reported results on benchmarking data sets show that co-training and self-training allow exploiting unlabelled data in different types of multiple classifiers systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.