This paper discusses the use of Random Forest (RF), a popular Machine Learning (ML) algorithm, to perform spatially explicit nowcasting of cloud-to-ground lightning occurrence. An application to the Italian territory and the surrounding seas is then presented. Specifically, a dataset including eighteen geo-environmental features has been used to forecast 1-hour ahead lightning occurrence over a three-months period (August- October 2018). The features' importance resulting from the best RF model showed how data-driven models are able to identify relationships between variables, in agreement with previous physically-based knowledge of the phenomenon. The encouraging results obtained in terms of forecasting accuracy suggest how, after proper improvements, ML-based algorithms could find their place in wider early-warning systems to support disaster risk management procedures.
Cloud-to-Ground lightning nowcasting using Machine Learning
La Fata A.;Procopio R.;
2021-01-01
Abstract
This paper discusses the use of Random Forest (RF), a popular Machine Learning (ML) algorithm, to perform spatially explicit nowcasting of cloud-to-ground lightning occurrence. An application to the Italian territory and the surrounding seas is then presented. Specifically, a dataset including eighteen geo-environmental features has been used to forecast 1-hour ahead lightning occurrence over a three-months period (August- October 2018). The features' importance resulting from the best RF model showed how data-driven models are able to identify relationships between variables, in agreement with previous physically-based knowledge of the phenomenon. The encouraging results obtained in terms of forecasting accuracy suggest how, after proper improvements, ML-based algorithms could find their place in wider early-warning systems to support disaster risk management procedures.File | Dimensione | Formato | |
---|---|---|---|
Cloud-to-Ground_lightning_nowcasting_using_Machine_Learning.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
963.63 kB
Formato
Adobe PDF
|
963.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.