Higher order curvature gravity has recently received a lot of attention since it gives rise to cosmological models which seem capable of solving dark energy and quintessence issues without using "ad hoc" scalar fields. Such an approach is naturally related to fundamental theories of quantum gravity which predict higher order terms for loop expansions of quantum fields in curved spacetimes. In this framework, we obtain a class of cosmological solutions which are fitted against cosmological data. We reproduce reliable models able to fit high redshift supernovae and WMAP observations. The age of the universe and other cosmological parameters are recovered in this context. Furthermore, in the weak field limit, we obtain gravitational potentials which differ from the Newtonian one because of repulsive corrections increasing with distance. We evaluate the rotation curve of our Galaxy and compare it with the observed data in order to test the viability of these theories and to estimate the scale-length of the correction. It is remarkable that the Milky Way rotation curve is well fitted without the need of any dark matter halo, and similar results hold also for other galaxies. © 2005 American Institute of Physics.

Higher order curvature theories of gravity matched with observations: A bridge between dark energy and dark matter problems

Capozziello S.;Carloni S.;
2005-01-01

Abstract

Higher order curvature gravity has recently received a lot of attention since it gives rise to cosmological models which seem capable of solving dark energy and quintessence issues without using "ad hoc" scalar fields. Such an approach is naturally related to fundamental theories of quantum gravity which predict higher order terms for loop expansions of quantum fields in curved spacetimes. In this framework, we obtain a class of cosmological solutions which are fitted against cosmological data. We reproduce reliable models able to fit high redshift supernovae and WMAP observations. The age of the universe and other cosmological parameters are recovered in this context. Furthermore, in the weak field limit, we obtain gravitational potentials which differ from the Newtonian one because of repulsive corrections increasing with distance. We evaluate the rotation curve of our Galaxy and compare it with the observed data in order to test the viability of these theories and to estimate the scale-length of the correction. It is remarkable that the Milky Way rotation curve is well fitted without the need of any dark matter halo, and similar results hold also for other galaxies. © 2005 American Institute of Physics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1081996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact