Combined Cycle Gas Turbines, CCGTs, are often considered as the bridging technology to a decarbonized energy system thanks to their high exploitation rate of the fuel energetic potential. At present time in most European countries, however, revenues from the electricity market on their own are insufficient to operate existing CCGTs profitably, also discouraging new investments and compromising the future of the technology. In addition to their high efficiency, CCGTs offer ancillary services in support of the operation of the grid such as spinning reserve and frequency control, thus any potential risk of plant decommissioning or reduced investments could translate into a risk for the well-functioning of the network. To ensure the reliability of the electricity system in a transition towards a higher share of renewables, the economic sustainability of CCGTs must be preserved, for which it becomes relevant to monetize properly the ancillary services provided. In this paper, an accurate statistical analysis was performed on the day-Ahead, intra-day, ancillary service, and balancing markets for the whole Italian power-oriented CCGT fleet. The profitability of 45 real production units, spread among 6 market zones, was assessed on an hourly basis considering local temperature, specific plant layouts, and off-design performance. The assessment revealed that net income from the ancillary service market doubled, on average, the one from the day-Ahead energy market. It was observed that to be competitive in the ancillary services market CCGTs are required to be more flexible in terms of ramp rates, minimum environmental loads, and partial load efficiencies. This paper explores how integrating a Heat Pump and a Thermal Energy Storage within a CCGT could allow improving its competitiveness in the ancillary services market, and thus its profitability, by means of implementing a model of optimal dispatch operating on the ancillary services market.

Ancillary services potential for flexible combined cycles

Vannoni A.;Sorce A.
2021

Abstract

Combined Cycle Gas Turbines, CCGTs, are often considered as the bridging technology to a decarbonized energy system thanks to their high exploitation rate of the fuel energetic potential. At present time in most European countries, however, revenues from the electricity market on their own are insufficient to operate existing CCGTs profitably, also discouraging new investments and compromising the future of the technology. In addition to their high efficiency, CCGTs offer ancillary services in support of the operation of the grid such as spinning reserve and frequency control, thus any potential risk of plant decommissioning or reduced investments could translate into a risk for the well-functioning of the network. To ensure the reliability of the electricity system in a transition towards a higher share of renewables, the economic sustainability of CCGTs must be preserved, for which it becomes relevant to monetize properly the ancillary services provided. In this paper, an accurate statistical analysis was performed on the day-Ahead, intra-day, ancillary service, and balancing markets for the whole Italian power-oriented CCGT fleet. The profitability of 45 real production units, spread among 6 market zones, was assessed on an hourly basis considering local temperature, specific plant layouts, and off-design performance. The assessment revealed that net income from the ancillary service market doubled, on average, the one from the day-Ahead energy market. It was observed that to be competitive in the ancillary services market CCGTs are required to be more flexible in terms of ramp rates, minimum environmental loads, and partial load efficiencies. This paper explores how integrating a Heat Pump and a Thermal Energy Storage within a CCGT could allow improving its competitiveness in the ancillary services market, and thus its profitability, by means of implementing a model of optimal dispatch operating on the ancillary services market.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1081795
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact