Nanoparticles are ever more present in our bodies, both as devices engineered for biomedical applications and as incidental intruders. Moreover, nanoparticles can be exploited as biomimetic devices, able to reproduce specific properties of relevant biological macromolecules, such as proteins, thanks to their design flexibility at the synthesis level. In each case, their fate in the biological environment is determined, among other properties, by their aggregation behavior. For this reason, it is crucial to understand the physical driving forces that underlie their aggregation, whether in water or at the biomembrane interface. When the aggregation takes place at the scale of a few nanometers, complex molecular mechanisms, detectable by high-resolution computer simulations, mediate the interactions. Coarse grained force fields offer a sweet spot in modeling these systems: while maintaining a relevant portion of molecular detail, they allow the study of the collective behavior of nanosized objects and large patches of lipid bilayers. This thesis uses coarse grained simulations to study the aggregation of nanoparticles with hydrophobic or functionalized amphiphilic surfaces in water and in membranes. In both environments, we find that the reshaping of the soft interfaces of these systems (NP-membrane and NP-NP) is the common factor driving the formation of unexpected aggregates, which assume peculiar, non-isotropic configurations. Our results pave the way to the rational design of nanoparticles with targeted aggregation properties due to the tunability of their ligand shell composition, core shape, and size. Moreover, many of the observed mechanisms can be generalized to understand the interactions of similar relevant biological macromolecules, such as proteins.

Nanoparticles and biomembranes as models for aggregation in the biological environment

LAVAGNA, ENRICO
2022-05-04

Abstract

Nanoparticles are ever more present in our bodies, both as devices engineered for biomedical applications and as incidental intruders. Moreover, nanoparticles can be exploited as biomimetic devices, able to reproduce specific properties of relevant biological macromolecules, such as proteins, thanks to their design flexibility at the synthesis level. In each case, their fate in the biological environment is determined, among other properties, by their aggregation behavior. For this reason, it is crucial to understand the physical driving forces that underlie their aggregation, whether in water or at the biomembrane interface. When the aggregation takes place at the scale of a few nanometers, complex molecular mechanisms, detectable by high-resolution computer simulations, mediate the interactions. Coarse grained force fields offer a sweet spot in modeling these systems: while maintaining a relevant portion of molecular detail, they allow the study of the collective behavior of nanosized objects and large patches of lipid bilayers. This thesis uses coarse grained simulations to study the aggregation of nanoparticles with hydrophobic or functionalized amphiphilic surfaces in water and in membranes. In both environments, we find that the reshaping of the soft interfaces of these systems (NP-membrane and NP-NP) is the common factor driving the formation of unexpected aggregates, which assume peculiar, non-isotropic configurations. Our results pave the way to the rational design of nanoparticles with targeted aggregation properties due to the tunability of their ligand shell composition, core shape, and size. Moreover, many of the observed mechanisms can be generalized to understand the interactions of similar relevant biological macromolecules, such as proteins.
File in questo prodotto:
File Dimensione Formato  
phdunige_3935583_1.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 11.62 MB
Formato Adobe PDF
11.62 MB Adobe PDF Visualizza/Apri
phdunige_3935583_2.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 10.9 MB
Formato Adobe PDF
10.9 MB Adobe PDF Visualizza/Apri
phdunige_3935583_3.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 13.28 MB
Formato Adobe PDF
13.28 MB Adobe PDF Visualizza/Apri
phdunige_3935583_4.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 414 kB
Formato Adobe PDF
414 kB Adobe PDF Visualizza/Apri
phdunige_3935583_5.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF Visualizza/Apri
phdunige_3935583_6.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 13.12 MB
Formato Adobe PDF
13.12 MB Adobe PDF Visualizza/Apri
phdunige_3935583_7.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 10.49 MB
Formato Adobe PDF
10.49 MB Adobe PDF Visualizza/Apri
phdunige_3935583_8.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 11 MB
Formato Adobe PDF
11 MB Adobe PDF Visualizza/Apri
phdunige_3935583_9.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 10.4 MB
Formato Adobe PDF
10.4 MB Adobe PDF Visualizza/Apri
phdunige_3935583_10.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 11.88 MB
Formato Adobe PDF
11.88 MB Adobe PDF Visualizza/Apri
phdunige_3935583_11.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 19.08 MB
Formato Adobe PDF
19.08 MB Adobe PDF Visualizza/Apri
phdunige_3935583_12.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 12.72 MB
Formato Adobe PDF
12.72 MB Adobe PDF Visualizza/Apri
phdunige_3935583_13.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 15.31 MB
Formato Adobe PDF
15.31 MB Adobe PDF Visualizza/Apri
phdunige_3935583_14.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 6 MB
Formato Adobe PDF
6 MB Adobe PDF Visualizza/Apri
phdunige_3935583_15.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1080924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact