This paper presents a data-driven model for the estimation of the performance of an aircooled steam condenser (ACC) with the aim to develop an efficient online monitoring, summarized by the condenser pressure (or vacuum) as Key Performance Indicator. The estimation of the ACC performance model was based on different dataset from three different combined cycle power plants with a gross power of above 380 MWe each, focusing on stationary condition of the steam turbine. The datasets include both boundary (e.g. Ambient Temperature, Wind Speed) and operative parameters (e.g. steam mass flow rate, Steam turbine power, electrical load of the ACC fans) acquired from the power plants and some derived variable as the incondensable fraction, which calculation is here proposed as additional parameter. After a preliminary sensitivity analysis on data correlation, the paper focuses on the evaluation of different ACC Condenser models: Semi-Empirical model is described trough curves typically based on steam mass flow rate (or condenser load) and the ambient temperature as main parameters. Since monitoring based on ACC design curves Semi-Empirical models, provides biased poor results, with an error of about 15%, the curves parameters were estimated basing on training data set. Other two data driven models were presented, basing on a neural network modelling and multi linear regression technique and compared on the base of the reduced number of input at first and then including aldo the other process variables in the prediction of the condenser back pressure. Estimate the parameters of the Semi-Empirical model, results in a better prediction if just steam mass flow rate and ambient temperature are available, with an error of the 7%, thanks to the knowledge contained within the "curves shapes", with respect to linear regression (8.3%) and Neural Network models (7.6%). Higher accuracy can be then obtained by considering a larger number of operative parameters and exploiting more complex data-driven model. With a higher number of features, the neural network model has proved a higher accuracy than the linear regression model. In fact, the mean percentage error of the NN model (2.6%), in all plant operating conditions, is slightly lower than the error of the linear regression model, but presents and much lower than the mean error of the Semi-Empirical model thanks to the additional data-based knowledge.

Data-Driven Air-Cooled Condenser Performance Assessment: Model and Input Variable Selection Comparison

Sorce A.;Sacile R.
2020-01-01

Abstract

This paper presents a data-driven model for the estimation of the performance of an aircooled steam condenser (ACC) with the aim to develop an efficient online monitoring, summarized by the condenser pressure (or vacuum) as Key Performance Indicator. The estimation of the ACC performance model was based on different dataset from three different combined cycle power plants with a gross power of above 380 MWe each, focusing on stationary condition of the steam turbine. The datasets include both boundary (e.g. Ambient Temperature, Wind Speed) and operative parameters (e.g. steam mass flow rate, Steam turbine power, electrical load of the ACC fans) acquired from the power plants and some derived variable as the incondensable fraction, which calculation is here proposed as additional parameter. After a preliminary sensitivity analysis on data correlation, the paper focuses on the evaluation of different ACC Condenser models: Semi-Empirical model is described trough curves typically based on steam mass flow rate (or condenser load) and the ambient temperature as main parameters. Since monitoring based on ACC design curves Semi-Empirical models, provides biased poor results, with an error of about 15%, the curves parameters were estimated basing on training data set. Other two data driven models were presented, basing on a neural network modelling and multi linear regression technique and compared on the base of the reduced number of input at first and then including aldo the other process variables in the prediction of the condenser back pressure. Estimate the parameters of the Semi-Empirical model, results in a better prediction if just steam mass flow rate and ambient temperature are available, with an error of the 7%, thanks to the knowledge contained within the "curves shapes", with respect to linear regression (8.3%) and Neural Network models (7.6%). Higher accuracy can be then obtained by considering a larger number of operative parameters and exploiting more complex data-driven model. With a higher number of features, the neural network model has proved a higher accuracy than the linear regression model. In fact, the mean percentage error of the NN model (2.6%), in all plant operating conditions, is slightly lower than the error of the linear regression model, but presents and much lower than the mean error of the Semi-Empirical model thanks to the additional data-based knowledge.
File in questo prodotto:
File Dimensione Formato  
e3sconf_ati2020_10003.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in versione editoriale
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1076829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact