Centrifuge modelling is an established technique capable of investigating the ground’s response to complex geotechnical events. Centrifuge models are often created from reconstituted soil, with well-defined boundary conditions and known soil parameters. Clay soil models may be prepared by mixing clay powder with distilled water to form a slurry. This slurry is placed within a soil container and subjected to a vertical stress (usually in a consolidation press or consolidated inflight). This creates an isotropic model but there is a fundamental difference between this soil model and naturally occurring soil deposits. The structure and fabric present within a naturally occurring clay is not reproduced by this preparation process. It is well-established that structure and fabric in naturally deposited soils are as significant in their effect on soil behaviour as, for instance, the stress history. Inherent structure and fabric within clay soils creates anisotropy which can vary with depth, this is particularly apparent when considering the permeability. Creating a soil model for centrifuge modelling with representative permeability anisotropy would allow for a better representation of consolidation driven events and the ability to observe long-term behaviour of complex geotechnical events. Currently, there are limited methods of doing so, leading to a considerable gap in knowledge associated with the behaviour of layered ground. This paper describes the development of the equipment and experimental procedure for quantifying the structure developed by different sample preparation techniques for centrifuge modelling.

Test of varied sample preparation methods for centrifuge modelling

Leonardo Maria Lalicata;
2020-01-01

Abstract

Centrifuge modelling is an established technique capable of investigating the ground’s response to complex geotechnical events. Centrifuge models are often created from reconstituted soil, with well-defined boundary conditions and known soil parameters. Clay soil models may be prepared by mixing clay powder with distilled water to form a slurry. This slurry is placed within a soil container and subjected to a vertical stress (usually in a consolidation press or consolidated inflight). This creates an isotropic model but there is a fundamental difference between this soil model and naturally occurring soil deposits. The structure and fabric present within a naturally occurring clay is not reproduced by this preparation process. It is well-established that structure and fabric in naturally deposited soils are as significant in their effect on soil behaviour as, for instance, the stress history. Inherent structure and fabric within clay soils creates anisotropy which can vary with depth, this is particularly apparent when considering the permeability. Creating a soil model for centrifuge modelling with representative permeability anisotropy would allow for a better representation of consolidation driven events and the ability to observe long-term behaviour of complex geotechnical events. Currently, there are limited methods of doing so, leading to a considerable gap in knowledge associated with the behaviour of layered ground. This paper describes the development of the equipment and experimental procedure for quantifying the structure developed by different sample preparation techniques for centrifuge modelling.
File in questo prodotto:
File Dimensione Formato  
2020_Ritchie et al_Test of varied sample preparation methods for centrifuge modelling.pdf

accesso chiuso

Descrizione: Contributo in atti di convegno
Tipologia: Documento in versione editoriale
Dimensione 352.99 kB
Formato Adobe PDF
352.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1075720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact