The recent emergence of consumer off-the-shelf embedded (IoT) devices and the rise of large-scale IoT botnets has dramatically increased the volume and sophistication of Linux malware observed in the wild. The security community has put a lot of effort to document these threats but analysts mostly rely on manual work, which makes it difficult to scale and hard to regularly maintain. Moreover, the vast amount of code reuse that characterizes IoT malware calls for an automated approach to detect similarities and identify the phylogenetic tree of each family. In this paper we present the largest measurement of IoT malware to date. We systematically reconstruct - through the use of binary code similarity - the lineage of IoT malware families, and track their relationships, evolution, and variants. We apply our technique on a dataset of more than 93k samples submitted to VirusTotal over a period of 3.5 years. We discuss the findings of our analysis and present several case studies to highlight the tangled relationships of IoT malware.

The Tangled Genealogy of IoT Malware

Dell'amico M.;
2020-01-01

Abstract

The recent emergence of consumer off-the-shelf embedded (IoT) devices and the rise of large-scale IoT botnets has dramatically increased the volume and sophistication of Linux malware observed in the wild. The security community has put a lot of effort to document these threats but analysts mostly rely on manual work, which makes it difficult to scale and hard to regularly maintain. Moreover, the vast amount of code reuse that characterizes IoT malware calls for an automated approach to detect similarities and identify the phylogenetic tree of each family. In this paper we present the largest measurement of IoT malware to date. We systematically reconstruct - through the use of binary code similarity - the lineage of IoT malware families, and track their relationships, evolution, and variants. We apply our technique on a dataset of more than 93k samples submitted to VirusTotal over a period of 3.5 years. We discuss the findings of our analysis and present several case studies to highlight the tangled relationships of IoT malware.
2020
9781450388580
File in questo prodotto:
File Dimensione Formato  
publi-6354.pdf

accesso chiuso

Descrizione: Contributo in atti di convegno
Tipologia: Documento in Post-print
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1070906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 44
social impact