The high quest for lightweight, strength, and toughness is driving the research towards the design of de novo high-performance materials. In structural applications composites generally represent the best option, offering an optimal stiffness-strength balance, combined with a low weight. Yet, their reduced toughness often represents a limitation for structural components. By solving the eternal strength-toughness dichotomy and providing a remarkable amplification of mechanical properties, natural hierarchical materials, such as bone, nacre, wood, may represent an optimal biomimetic model and continue to be a great source of inspiration for new materials design. Today blending computation and additive manufacturing allows researcher to further expand the design space, bringing it to a new level. Here we show different case studies of bio-inspired design, highlighting the effect of a specific hierarchical sub-structure on the local and global properties of the overall structure and the role of the characteristic structural features to trigger specific mechanisms.

Blending computation and additive manufacturing for de novo materials design

Flavia Libonati
2021

Abstract

The high quest for lightweight, strength, and toughness is driving the research towards the design of de novo high-performance materials. In structural applications composites generally represent the best option, offering an optimal stiffness-strength balance, combined with a low weight. Yet, their reduced toughness often represents a limitation for structural components. By solving the eternal strength-toughness dichotomy and providing a remarkable amplification of mechanical properties, natural hierarchical materials, such as bone, nacre, wood, may represent an optimal biomimetic model and continue to be a great source of inspiration for new materials design. Today blending computation and additive manufacturing allows researcher to further expand the design space, bringing it to a new level. Here we show different case studies of bio-inspired design, highlighting the effect of a specific hierarchical sub-structure on the local and global properties of the overall structure and the role of the characteristic structural features to trigger specific mechanisms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1062010
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact