Video-based grasp classification can enhance robotics and prosthetics. However, its accuracy is low when compared to e-skin based systems. This paper improves video-based grasp classification systems by including an automatic annotation of the frames that highlights the joints of the hand. Experiments on real-world data prove that the proposed system obtains higher accuracy with respect to the previous solutions. In addition, the framework is implemented on a NVIDIA Jetson TX2, achieving real-time performances.
Video Grasping Classification Enhanced with Automatic Annotations
Ragusa E.;Gianoglio C.;Dalmonte F.;Gastaldo P.
2021-01-01
Abstract
Video-based grasp classification can enhance robotics and prosthetics. However, its accuracy is low when compared to e-skin based systems. This paper improves video-based grasp classification systems by including an automatic annotation of the frames that highlights the joints of the hand. Experiments on real-world data prove that the proposed system obtains higher accuracy with respect to the previous solutions. In addition, the framework is implemented on a NVIDIA Jetson TX2, achieving real-time performances.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Paper_5.pdf
accesso chiuso
Descrizione: Contributo in volume
Tipologia:
Documento in versione editoriale
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.