Cognitive Radio Internet of Things (CR-IoT) has revolutionized almost every field of life and reshaped the technological world. Several tiny devices are seamlessly connected in a CR-IoT network to perform various tasks in many applications. Nevertheless, CR-IoT surfers from malicious attacks that pulverize communication and perturb network performance. Therefore, recently it is envisaged to introduce higher-level Artificial Intelligence (AI) by incorporating Self-Awareness (SA) capabilities into CR-IoT objects to facilitate CR-IoT networks to establish secure transmission against vicious attacks autonomously. In this context, sub-band information from the Orthogonal Frequency Division Multiplexing (OFDM) modulated transmission in the spectrum has been extracted from the radio device receiver terminal, and a generalized state vector (GS) is formed containing low dimension in-phase and quadrature components. Accordingly, a probabilistic method based on learning a switching Dynamic Bayesian Network (DBN) from OFDM transmission with no abnormalities has been proposed to statistically model signal behaviors inside the CR-IoT spectrum. A Bayesian filter, Markov Jump Particle Filter (MJPF), is implemented to perform state estimation and capture malicious attacks. Subsequently, GS containing a higher number of subcarriers has been investigated. In this connection, Variational autoencoders (VAE) is used as a deep learning technique to extract features from high dimension radio signals into low dimension latent space z, and DBN is learned based on GS containing latent space data. Afterward, to perform state estimation and capture abnormalities in a spectrum, Adapted-Markov Jump Particle Filter (A-MJPF) is deployed. The proposed method can capture anomaly that appears due to either jammer attacks in transmission or cognitive devices in a network experiencing different transmission sources that have not been observed previously. The performance is assessed using the receiver operating characteristic (ROC) curves and the area under the curve (AUC) metrics.

Data-Driven Approach based on Deep Learning and Probabilistic Models for PHY-Layer Security in AI-enabled Cognitive Radio IoT

SYED, MUHAMMAD FARRUKH SHAHID
2021-06-30

Abstract

Cognitive Radio Internet of Things (CR-IoT) has revolutionized almost every field of life and reshaped the technological world. Several tiny devices are seamlessly connected in a CR-IoT network to perform various tasks in many applications. Nevertheless, CR-IoT surfers from malicious attacks that pulverize communication and perturb network performance. Therefore, recently it is envisaged to introduce higher-level Artificial Intelligence (AI) by incorporating Self-Awareness (SA) capabilities into CR-IoT objects to facilitate CR-IoT networks to establish secure transmission against vicious attacks autonomously. In this context, sub-band information from the Orthogonal Frequency Division Multiplexing (OFDM) modulated transmission in the spectrum has been extracted from the radio device receiver terminal, and a generalized state vector (GS) is formed containing low dimension in-phase and quadrature components. Accordingly, a probabilistic method based on learning a switching Dynamic Bayesian Network (DBN) from OFDM transmission with no abnormalities has been proposed to statistically model signal behaviors inside the CR-IoT spectrum. A Bayesian filter, Markov Jump Particle Filter (MJPF), is implemented to perform state estimation and capture malicious attacks. Subsequently, GS containing a higher number of subcarriers has been investigated. In this connection, Variational autoencoders (VAE) is used as a deep learning technique to extract features from high dimension radio signals into low dimension latent space z, and DBN is learned based on GS containing latent space data. Afterward, to perform state estimation and capture abnormalities in a spectrum, Adapted-Markov Jump Particle Filter (A-MJPF) is deployed. The proposed method can capture anomaly that appears due to either jammer attacks in transmission or cognitive devices in a network experiencing different transmission sources that have not been observed previously. The performance is assessed using the receiver operating characteristic (ROC) curves and the area under the curve (AUC) metrics.
30-giu-2021
[ Cognitive Radio Internet of Things (CR-IoT); Deep Learning; Variational Autoencoders; Dynamic Bayesian Network; Kalman Filter; Particle Filter; Self-Awareness; Markov Jump Particle Filter ]
File in questo prodotto:
File Dimensione Formato  
phdunige_4096753.pdf.pdf

accesso aperto

Descrizione: PhD Thesis
Tipologia: Tesi di dottorato
Dimensione 9.08 MB
Formato Adobe PDF
9.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1048543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact