The present work deals with environmental sustainability and specific engineering solutions able to cope with such a global issue. Attention is focused on renewable energy and innovative fuels as effective strategies in contributing valuable techniques in order to face the need of mitigating environmental problems concerning climate change and global warming. The research study is targeted on optimized design and management of fluid machinery, and extensively on optimized energy conversion systems, conceptualized in accordance with current standards and regulations, governing the reference sector. The analysis investigates small energy supply from renewables (wind power) and innovative marine propulsion (alternative fuels and unconventional propulsion systems). Regulations and technical design are constantly focused for the study. The work proposes case solutions for energy design and management actions dealing with the theme of environmental sustainability: engineering analyses (design, technical-economical evaluation, performance results) for hybrid wind powered plants empowering SWRO (Sea Water Reverse Osmosis) desalination processes; engineering analyses (design, technical evaluation, performance results) for wind turbine rotors operating in sites characterized by a small wind resource; engineering analyses (design, technical evaluation, performance results) for marine ship propulsion empowered by LNG as an alternative sustainable fuel and by gas turbines as prime movers coupled to combined cycles as an innovative propulsion system (COGES configuration).

Criticità nelle esigenze e nelle offerte energetiche: il ruolo rilevante della progettazione e della gestione ottimizzata delle macchine a fluido e dei sistemi per la conversione di energia. Aspetti applicativi nella piccola fornitura di energia e nella propulsione navale

BONO, ANDREA
2021-05-25

Abstract

The present work deals with environmental sustainability and specific engineering solutions able to cope with such a global issue. Attention is focused on renewable energy and innovative fuels as effective strategies in contributing valuable techniques in order to face the need of mitigating environmental problems concerning climate change and global warming. The research study is targeted on optimized design and management of fluid machinery, and extensively on optimized energy conversion systems, conceptualized in accordance with current standards and regulations, governing the reference sector. The analysis investigates small energy supply from renewables (wind power) and innovative marine propulsion (alternative fuels and unconventional propulsion systems). Regulations and technical design are constantly focused for the study. The work proposes case solutions for energy design and management actions dealing with the theme of environmental sustainability: engineering analyses (design, technical-economical evaluation, performance results) for hybrid wind powered plants empowering SWRO (Sea Water Reverse Osmosis) desalination processes; engineering analyses (design, technical evaluation, performance results) for wind turbine rotors operating in sites characterized by a small wind resource; engineering analyses (design, technical evaluation, performance results) for marine ship propulsion empowered by LNG as an alternative sustainable fuel and by gas turbines as prime movers coupled to combined cycles as an innovative propulsion system (COGES configuration).
25-mag-2021
Alternative fuels; Climate change; COGES; Combined cycle; Desalination; Energy conversion system; Fluid machinery; Gas turbine; Environmental sustainability; Global warming; Heat recovery steam generator; Hybrid wind powered plants; Innovative fuels; Liquefied natural gas; Marine propulsion; Optimized design; Renewable energy; Renewables; Sea water reverse osmosis; Steam turbine; Unconventional propulsion systems; Wind power; Wind turbine;
File in questo prodotto:
File Dimensione Formato  
phdunige_4466244.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Dimensione 13.93 MB
Formato Adobe PDF
13.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1046981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact