A theoretical framework for clustering data is presented according to the dissimilarity behaviour as measured via a suitable copula-based coefficient and study its main properties. The coefficients are defined in terms of copulas, which may or may not be Gaussian. Applications to real data are used to illustrate the usefulness and importance of our proposal.

Clustering via copula-based dissimilarity measures

Nai Ruscone, Marta;
2020-01-01

Abstract

A theoretical framework for clustering data is presented according to the dissimilarity behaviour as measured via a suitable copula-based coefficient and study its main properties. The coefficients are defined in terms of copulas, which may or may not be Gaussian. Applications to real data are used to illustrate the usefulness and importance of our proposal.
2020
978-9963-2227-9-7
File in questo prodotto:
File Dimensione Formato  
1222020.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 702.12 kB
Formato Adobe PDF
702.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1044772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact