Recent advances on markerless pose estimation based on computer vision and deep neural networks are opening the possibility of adopting efficient methods for extracting precise human pose and movement information from video data. In this paper we report the results of a pilot study carried out on a clinical gait analysis study-case, where we compare 2D parameters computed with a reference marker-based technique with the ones obtained with a markerless pipeline. The results we report are encouraging as they show there are no statistically significant differences between a set of selected parameters computed with the standard approach and the markerless one. Our study opens to a wide range of application of the approach on the variety of clinical domains, with countless benefits in terms of simplicity, unobtrusiveness, and computational efficiency.

Markerless gait analysis in stroke survivors based on computer vision and deep learning: A pilot study

Moro M.;Marchesi G.;Odone F.;Casadio M.
2020-01-01

Abstract

Recent advances on markerless pose estimation based on computer vision and deep neural networks are opening the possibility of adopting efficient methods for extracting precise human pose and movement information from video data. In this paper we report the results of a pilot study carried out on a clinical gait analysis study-case, where we compare 2D parameters computed with a reference marker-based technique with the ones obtained with a markerless pipeline. The results we report are encouraging as they show there are no statistically significant differences between a set of selected parameters computed with the standard approach and the markerless one. Our study opens to a wide range of application of the approach on the variety of clinical domains, with countless benefits in terms of simplicity, unobtrusiveness, and computational efficiency.
2020
9781450368667
File in questo prodotto:
File Dimensione Formato  
gait.pdf

accesso chiuso

Descrizione: Contributo in atti di convegno
Tipologia: Documento in versione editoriale
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1035644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact