In this paper, we propose the use of a new modality characterized by a richer information content, namely acoustic images, for the sake of audio-visual scene understanding. Each pixel in such images is characterized by a spectral signature, associated to a specific direction in space and obtained by processing the audio signals coming from an array of microphones. By coupling such array with a video camera, we obtain spatio-temporal alignment of acoustic images and video frames. This constitutes a powerful source of self-supervision, which can be exploited in the learning pipeline we are proposing, without resorting to expensive data annotations. However, since 2D planar arrays are cumbersome and not as widespread as ordinary microphones, we propose that the richer information content of acoustic images can be distilled, through a self-supervised learning scheme, into more powerful audio and visual feature representations. The learnt feature representations can then be employed for downstream tasks such as classification and cross-modal retrieval, without the need of a microphone array. To prove that, we introduce a novel multimodal dataset consisting in RGB videos, raw audio signals and acoustic images, aligned in space and synchronized in time. Experimental results demonstrate the validity of our hypothesis and the effectiveness of the proposed pipeline, also when tested for tasks and datasets different from those used for training.
Leveraging Acoustic Images for Effective Self-supervised Audio Representation Learning
Sanguineti V.;Morerio P.;Greco D.;Murino V.
2020-01-01
Abstract
In this paper, we propose the use of a new modality characterized by a richer information content, namely acoustic images, for the sake of audio-visual scene understanding. Each pixel in such images is characterized by a spectral signature, associated to a specific direction in space and obtained by processing the audio signals coming from an array of microphones. By coupling such array with a video camera, we obtain spatio-temporal alignment of acoustic images and video frames. This constitutes a powerful source of self-supervision, which can be exploited in the learning pipeline we are proposing, without resorting to expensive data annotations. However, since 2D planar arrays are cumbersome and not as widespread as ordinary microphones, we propose that the richer information content of acoustic images can be distilled, through a self-supervised learning scheme, into more powerful audio and visual feature representations. The learnt feature representations can then be employed for downstream tasks such as classification and cross-modal retrieval, without the need of a microphone array. To prove that, we introduce a novel multimodal dataset consisting in RGB videos, raw audio signals and acoustic images, aligned in space and synchronized in time. Experimental results demonstrate the validity of our hypothesis and the effectiveness of the proposed pipeline, also when tested for tasks and datasets different from those used for training.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.