We investigate and characterize the inherent resilience of conditional Generative Adversarial Networks (cGANs) against noise in their conditioning labels, and exploit this fact in the context of Unsupervised Domain Adaptation (UDA). In UDA, a classifier trained on the labelled source set can be used to infer pseudo-labels on the unlabelled target set. However, this will result in a significant amount of misclassified examples (due to the well-known domain shift issue), which can be interpreted as noise injection in the ground-truth labels for the target set. We show that cGANs are, to some extent, robust against such "shift noise". Indeed, cGANs trained with noisy pseudo-labels, are able to filter such noise and generate cleaner target samples. We exploit this finding in an iterative procedure where a generative model and a classifier are jointly trained: in turn, the generator allows to sample cleaner data from the target distribution, and the classifier allows to associate better labels to target samples, progressively refining target pseudo-labels. Results on common benchmarks show that our method performs better or comparably with the unsupervised domain adaptation state of the art.

Generative pseudo-label refinement for unsupervised domain adaptation

Morerio P.;Volpi R.;Ragonesi R.;Murino V.
2020-01-01

Abstract

We investigate and characterize the inherent resilience of conditional Generative Adversarial Networks (cGANs) against noise in their conditioning labels, and exploit this fact in the context of Unsupervised Domain Adaptation (UDA). In UDA, a classifier trained on the labelled source set can be used to infer pseudo-labels on the unlabelled target set. However, this will result in a significant amount of misclassified examples (due to the well-known domain shift issue), which can be interpreted as noise injection in the ground-truth labels for the target set. We show that cGANs are, to some extent, robust against such "shift noise". Indeed, cGANs trained with noisy pseudo-labels, are able to filter such noise and generate cleaner target samples. We exploit this finding in an iterative procedure where a generative model and a classifier are jointly trained: in turn, the generator allows to sample cleaner data from the target distribution, and the classifier allows to associate better labels to target samples, progressively refining target pseudo-labels. Results on common benchmarks show that our method performs better or comparably with the unsupervised domain adaptation state of the art.
2020
978-1-7281-6553-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1017128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact