The first anthropomorphic robots and exoskeletons were developed with the idea of combining man and machine into an intimate symbiotic unit that can perform as one joint system. A human-robot interface consists of processes of two different nature: (1) the physical interaction (pHRI) between the device and its user and (2) the exchange of cognitive information (cHRI) between the human and the robot. To achieve the symbiosis between the two actors, both need to be optimized. The evolution of mechanical design and the introduction of new materials pushed pHRI to new frontiers on ergonomics and assistance performance. However, cHRI still lacks on this direction because is more complicated: it requires communication from the cognitive processes occuring in the human agent to the robot, e.g. intention detection; but also from the robot to the human agent, e.g. feedback modalities such as haptic cues. A possible innovation is the inclusion of the electromyographic signal, the command signal from our brain to the musculoskeletal system for the movement, in the robot control loop. The aim of this thesis was to develop a real-time control framework for an assistive device that can generate the same force produced by the muscles. To do this, I incorporated in the robot control loop a detailed musculoskeletal model that estimates the net torque at the joint level by taking as inputs the electromyography signals and kinematic data. This module is called myoprocessor. Here I present two applications of this control approach: the first was implemented on a soft wearable arm exosuit in order to evaluate the adaptation of the controller on different motion and loads. The second one, was a generation of myoprocessor-driven force field on a planar robot manipulandum in order to study the modularity changes of the musculoskeletal system. Both applications showed that the device controlled by myoprocessor works symbiotically with the user, by reducing the muscular activity and preserving the motor performance. The ability of seamlessly combining musculoskeletal force estimators with assistive devices opens new avenues for assisting human movement both in healthy and impaired individuals.
Model-based myoelectric control of robots for assistance and rehabilitation
LOTTI, NICOLA
2020-05-29
Abstract
The first anthropomorphic robots and exoskeletons were developed with the idea of combining man and machine into an intimate symbiotic unit that can perform as one joint system. A human-robot interface consists of processes of two different nature: (1) the physical interaction (pHRI) between the device and its user and (2) the exchange of cognitive information (cHRI) between the human and the robot. To achieve the symbiosis between the two actors, both need to be optimized. The evolution of mechanical design and the introduction of new materials pushed pHRI to new frontiers on ergonomics and assistance performance. However, cHRI still lacks on this direction because is more complicated: it requires communication from the cognitive processes occuring in the human agent to the robot, e.g. intention detection; but also from the robot to the human agent, e.g. feedback modalities such as haptic cues. A possible innovation is the inclusion of the electromyographic signal, the command signal from our brain to the musculoskeletal system for the movement, in the robot control loop. The aim of this thesis was to develop a real-time control framework for an assistive device that can generate the same force produced by the muscles. To do this, I incorporated in the robot control loop a detailed musculoskeletal model that estimates the net torque at the joint level by taking as inputs the electromyography signals and kinematic data. This module is called myoprocessor. Here I present two applications of this control approach: the first was implemented on a soft wearable arm exosuit in order to evaluate the adaptation of the controller on different motion and loads. The second one, was a generation of myoprocessor-driven force field on a planar robot manipulandum in order to study the modularity changes of the musculoskeletal system. Both applications showed that the device controlled by myoprocessor works symbiotically with the user, by reducing the muscular activity and preserving the motor performance. The ability of seamlessly combining musculoskeletal force estimators with assistive devices opens new avenues for assisting human movement both in healthy and impaired individuals.File | Dimensione | Formato | |
---|---|---|---|
phdunige_4027553.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Dimensione
12.54 MB
Formato
Adobe PDF
|
12.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.