Nowadays, most of the health organizations make use of Health Information Systems (HIS) to support the staff to provide patients with proper care service. In this context, security and privacy are key to establish trust between the actors involved in the healthcare process, including the patient. However, patients' privacy cannot jeopardize their safety: as a consequence, a compromise between the two must eventually be found. Privilege management and access control are necessary elements to provide security and privacy. In this thesis, we first present the main features that make the Role Based Access Control suitable for permissions management and access control in HIS. We then address the User Authorization Query (UAQ) problem for RBAC, namely the problem of determining the optimum set of roles to activate to provide the user with the requested permissions (if the user is authorized) while satisfying a set of Dynamic Mutually Exclusive Roles (DMER) constraints and achieving some optimization objective (least privilege versus availability). As a first contribution, we show how DMER can be used to support the enforcement of SoD. The UAQ problem is known to be NP-hard. Most of the techniques proposed in the literature to solve it have been experimentally evaluated by running them against different benchmark problems. However, the adequacy of the latter is seldom discussed. In this thesis, we propose a methodology for evaluating existing benchmarks or designing new ones: the methodology leverages the asymptotic complexity analysis of the solving procedures provided in other works to forsee the benchmarks complexity given the values of the most significant RBAC dimensions. First, we use our methodology to demonstrate that the state-of-the-art benchmarks are unsatisfactory. We then introduce UAQ-Solve, a tool that works both as generator of benchmarks and as UAQ solver leveraging existing PMAXSAT complete solvers. By using UAQ-Solve, we apply our methodology to generate a novel suite of parametric benchmarks that allows for the systematic assessment of UAQ solvers over a number of relevant dimensions. These include problems for which no polynomial-time algorithm is known as well as problems for which polynomial-time algorithms do exist. We then execute UAQ-Solve over our benchmarks to compare the performance of different complete and incomplete PMAXSAT solvers.

Extensions and Experimental Evaluation of SAT-based solvers for the UAQ problem

GAZZARATA, GIORGIA
2020-05-08

Abstract

Nowadays, most of the health organizations make use of Health Information Systems (HIS) to support the staff to provide patients with proper care service. In this context, security and privacy are key to establish trust between the actors involved in the healthcare process, including the patient. However, patients' privacy cannot jeopardize their safety: as a consequence, a compromise between the two must eventually be found. Privilege management and access control are necessary elements to provide security and privacy. In this thesis, we first present the main features that make the Role Based Access Control suitable for permissions management and access control in HIS. We then address the User Authorization Query (UAQ) problem for RBAC, namely the problem of determining the optimum set of roles to activate to provide the user with the requested permissions (if the user is authorized) while satisfying a set of Dynamic Mutually Exclusive Roles (DMER) constraints and achieving some optimization objective (least privilege versus availability). As a first contribution, we show how DMER can be used to support the enforcement of SoD. The UAQ problem is known to be NP-hard. Most of the techniques proposed in the literature to solve it have been experimentally evaluated by running them against different benchmark problems. However, the adequacy of the latter is seldom discussed. In this thesis, we propose a methodology for evaluating existing benchmarks or designing new ones: the methodology leverages the asymptotic complexity analysis of the solving procedures provided in other works to forsee the benchmarks complexity given the values of the most significant RBAC dimensions. First, we use our methodology to demonstrate that the state-of-the-art benchmarks are unsatisfactory. We then introduce UAQ-Solve, a tool that works both as generator of benchmarks and as UAQ solver leveraging existing PMAXSAT complete solvers. By using UAQ-Solve, we apply our methodology to generate a novel suite of parametric benchmarks that allows for the systematic assessment of UAQ solvers over a number of relevant dimensions. These include problems for which no polynomial-time algorithm is known as well as problems for which polynomial-time algorithms do exist. We then execute UAQ-Solve over our benchmarks to compare the performance of different complete and incomplete PMAXSAT solvers.
8-mag-2020
File in questo prodotto:
File Dimensione Formato  
phdunige_3515196.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 4.89 MB
Formato Adobe PDF
4.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1008022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact