Nome |
# |
Correlation of Changes of CHO–K1 Cells Metabolism to Changes in Protein Expression in cAMP Differentiation, file e268c4c6-1995-a6b7-e053-3a05fe0adea1
|
107
|
Science and Technology for A Sustainable Human Development, file e268c4c9-aae1-a6b7-e053-3a05fe0adea1
|
95
|
Synchrotron powder diffraction study of radiation damage in Langmuir Blodgett nanotemplate crystallised protein, file e268c4c9-5bbb-a6b7-e053-3a05fe0adea1
|
88
|
Protein Confinement in the Anodic Porous Alumina Microarray, file e268c4c9-5c79-a6b7-e053-3a05fe0adea1
|
85
|
Raman spectroscopy of protein crystal nucleation and growth, file e268c4c9-5bb7-a6b7-e053-3a05fe0adea1
|
81
|
NanoWorld Conference Best Poster Award Winners, file e268c4ca-da3e-a6b7-e053-3a05fe0adea1
|
81
|
Special Article of Prof. Nicolini 75th Birthday, Editor-in-Chief NanoWorld Journal, file e268c4ca-be84-a6b7-e053-3a05fe0adea1
|
79
|
Langmuir-Blodgett Protein Multilayer Nanofilms by XFEL, file e268c4c9-aae3-a6b7-e053-3a05fe0adea1
|
73
|
LB Crystallization and Preliminary X-ray Diffraction Analysis of L-Asparaginase from Rhodospirillum rubrum, file e268c4c9-5705-a6b7-e053-3a05fe0adea1
|
58
|
Nanoprobe NAPPA Arrays for the Nanoconductimetric Analysis of Ultra-Low-Volume Protein Samples Using Piezoelectric Liquid Dispensing Technology, file e268c4c9-5bec-a6b7-e053-3a05fe0adea1
|
55
|
Determination of Protein-Protein Interaction for Cancer Control via Mass Spectrometry and Nanoconductimetry of NAPPA SNAP Arrays: An Overview, file e268c4c9-5c02-a6b7-e053-3a05fe0adea1
|
55
|
Microarray-based Functional Nanoproteomics for an Industrial Approach to Cancer: I Bioinformatics and miRNAome, file e268c4c9-5bfe-a6b7-e053-3a05fe0adea1
|
53
|
Microarray-based Functional Nanoproteomics for an Industrial Approach to Cancer. II Mass Spectrometry and Nanoconductimetry, file e268c4c9-5c6a-a6b7-e053-3a05fe0adea1
|
53
|
Stability and Radiation Damage of Protein Crystals as Studied by Means of Molecular Dynamics and Monte Carlo Simulation, file e268c4c9-5c75-a6b7-e053-3a05fe0adea1
|
53
|
NAPPA-Based Vaccines for a New Proteogenomics Approach for Public Health, file e268c4c9-5bf0-a6b7-e053-3a05fe0adea1
|
52
|
Protein Crystallization by Anodic Porous Alumina (APA) Template: The Example of Hen Egg White Lysozyme (HEWL), file e268c4c9-5bee-a6b7-e053-3a05fe0adea1
|
51
|
Langmuir-Blodgett Technology for Drugs Production and Delivery: Insights and Implications from an In Silico Study, file e268c4c9-5709-a6b7-e053-3a05fe0adea1
|
50
|
A Novel Rhodopsin Gene from Octopus vulgaris for Optobioelectronics Materials, file e268c4c9-5bf4-a6b7-e053-3a05fe0adea1
|
48
|
Special Issue on Protein Nanotechnology for Biophysical and Biomedical Studies – Introduction, file e268c4c9-5c71-a6b7-e053-3a05fe0adea1
|
48
|
Response to: Open Debate article "How Bibliometric Indicators Should Be Used to Assess Excellence in Science and Technology" by Nicolini C. 2016, file e268c4ca-dbfe-a6b7-e053-3a05fe0adea1
|
43
|
Atomic force microscopy of protein films and crystals, file e268c4c5-faaf-a6b7-e053-3a05fe0adea1
|
14
|
Synchrotron Radiation and Structural Proteomics, file e268c4c5-ffbf-a6b7-e053-3a05fe0adea1
|
13
|
Immunosuppressive drug-free operational immune tollerance in human kidney transplant recipient: I. Blood gene expression statistical analysis, file e268c4c5-f824-a6b7-e053-3a05fe0adea1
|
11
|
Molecular modeling to facilitate protein crystallization, file e268c4c5-fc45-a6b7-e053-3a05fe0adea1
|
9
|
Three-dimensional atomic structure of a catalytic subunit mutant of human protein kinase CK2, file e268c4c5-ffde-a6b7-e053-3a05fe0adea1
|
9
|
AKT1 leader gene and downstream targets are involved in a rat model of kidney allograft tolerance, file e268c4c5-f691-a6b7-e053-3a05fe0adea1
|
8
|
Immunosuppressive drug-free operational immune tollerance in human kidney transplant recipient: II. Non-statistical gene microarray analysis, file e268c4c5-f823-a6b7-e053-3a05fe0adea1
|
8
|
Thermal Stability of Lysozyme Langmuir-Schaefer Films by FTIR Spectroscopy, file e268c4c6-025a-a6b7-e053-3a05fe0adea1
|
8
|
Langmuir-Blodgett based lipase nanofilms of unique structure-function relationship, file e268c4c6-0459-a6b7-e053-3a05fe0adea1
|
8
|
LB Protein Nanotechnology for Synchrotron Radiation and XFEL, file e268c4ca-bd8a-a6b7-e053-3a05fe0adea1
|
8
|
Mapping electrostatic potential of a protein on its hydrophobic surface: Implications for crystallization of Cytochrome P450scc, file e268c4c5-f612-a6b7-e053-3a05fe0adea1
|
7
|
Atomic structure of a CK2alpha human kinase by microfocus diffraction of extra-small microcrystals grown with nanobiofilm template, file e268c4c5-fa55-a6b7-e053-3a05fe0adea1
|
7
|
DNASER II. Novel surface patterning for biomolecular microarray, file e268c4c5-fca2-a6b7-e053-3a05fe0adea1
|
7
|
MicroGISAXS of LB protein films: effect of temperature on long range order, file e268c4c6-006b-a6b7-e053-3a05fe0adea1
|
7
|
Radiation stability of proteinase K grown by LB nanotemplate method, file e268c4c6-0256-a6b7-e053-3a05fe0adea1
|
7
|
Nanostructured Biofilms and Biocrystals, file e268c4c5-ee61-a6b7-e053-3a05fe0adea1
|
6
|
Atomic structure and radiation resistance of Langmuir-Blodgett protein crystals, file e268c4c5-fbc3-a6b7-e053-3a05fe0adea1
|
6
|
Groel crystal growth and characterization, file e268c4c6-0069-a6b7-e053-3a05fe0adea1
|
6
|
Protein thermal stability: the role of protein structure and aqueous environment, file e268c4c6-025b-a6b7-e053-3a05fe0adea1
|
6
|
Nanocrystallography: an emerging technology for structural proteomics, file e268c4c5-f7cf-a6b7-e053-3a05fe0adea1
|
5
|
Proteomics and Nanocrystallography, file e268c4c5-f922-a6b7-e053-3a05fe0adea1
|
5
|
Growth and organization of Langmuir-Blodgett protein crystals via in situ GISAXS, laser-microdissection, nanodiffraction, Raman spectroscopy and atomic force microscopy, file e268c4c5-fef2-a6b7-e053-3a05fe0adea1
|
5
|
Comparison of lysozyme structures derived from thin-film-based and classical crystals, file e268c4c6-00a8-a6b7-e053-3a05fe0adea1
|
5
|
Investigating crystal growth mechanisms with and without LB template: protein transfer from LB to crystal, file e268c4c6-02db-a6b7-e053-3a05fe0adea1
|
5
|
Protein nucleation and crystallization by homologous protein thin film template, file e268c4c6-0598-a6b7-e053-3a05fe0adea1
|
5
|
Radiation stability of protein crystals grown by nanostructured templates: synchrotron microfocus analysis, file e268c4c5-f826-a6b7-e053-3a05fe0adea1
|
4
|
Computer model of a lysozyme crystal growth with/without nanotemplate - a comparison, file e268c4c5-fc8d-a6b7-e053-3a05fe0adea1
|
4
|
Crystallization of alpha and beta subunits of IF2 translation initiation factor from Archaebacteria Sulfolobus Solfataricus, file e268c4c5-fd99-a6b7-e053-3a05fe0adea1
|
4
|
SMILE silencing and PMA activation gene networks in hela cells: comparison with kidney transplantation gene networks., file e268c4c6-08d7-a6b7-e053-3a05fe0adea1
|
4
|
In situ study of nanotemplate-induced growth of lysozyme microcrystals by submicrometer GISAXS, file e268c4c6-0a65-a6b7-e053-3a05fe0adea1
|
4
|
Structure and growth of ultrasmall protein microcrystals by synchrotron radiation. I. microGISAXS and microdiffraction of P450scc, file e268c4c6-14df-a6b7-e053-3a05fe0adea1
|
4
|
Nanogenomics and nanoproteomics for personalized nanotheranostics for oral and colorectal cancer, file e268c4c9-5e14-a6b7-e053-3a05fe0adea1
|
4
|
Acknowledgement of Manuscript Reviewers NWJ Volume-4 (2018), file e268c4ca-be82-a6b7-e053-3a05fe0adea1
|
4
|
Mesoscale Ordering of Phycocyanin Molecules in Langmuir-Blodgett Multilayers, file 32043af3-567a-475b-a773-13a044fcd7c4
|
3
|
μGisaxs and protein nanotemplate crystallizaion: methods and instrumentation, file e268c4c5-eee1-a6b7-e053-3a05fe0adea1
|
3
|
In situ microGISAXS: I. Experimental setup for submicron study of protein nucleation and growth, file e268c4c5-fc8e-a6b7-e053-3a05fe0adea1
|
3
|
Nanoproteomics for nanomedicine, file e268c4c6-011c-a6b7-e053-3a05fe0adea1
|
3
|
Synchrotron Diffraction of Multilayered LS PGA Film after Heating and Cooling, file e268c4c9-5bea-a6b7-e053-3a05fe0adea1
|
3
|
“Langmuir-Blodgett Protein Multilayer Technology as a Potential Tool for Structural Discovery”, file e268c4ca-c043-a6b7-e053-3a05fe0adea1
|
3
|
Synchrotron radiation and nanobiosciences - introductory overview, file e268c4c5-eee0-a6b7-e053-3a05fe0adea1
|
2
|
Special issue of Journal of Synchrotron Radiation on Synchrotron radiation and Nanobiosciences, file e268c4c5-fa7b-a6b7-e053-3a05fe0adea1
|
2
|
In situ microGISAXS: II. Thaumatin crystal growth kinetic, file e268c4c5-ff56-a6b7-e053-3a05fe0adea1
|
2
|
Atomic structure of the beta-subunit of the translation initiation factor Aif2 from Archaebacteria sulfolobus solfataricus: high resolution NMR in solution, file e268c4c6-041b-a6b7-e053-3a05fe0adea1
|
2
|
Atomic Force Microscopy And Anodic Porous Allumina Of Nucleic Acid Programmable Protein Arrays, file e268c4c6-0a68-a6b7-e053-3a05fe0adea1
|
2
|
Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites, file e268c4c6-233c-a6b7-e053-3a05fe0adea1
|
2
|
Emergence of amyloidic fibrillation in 2D-ordered Langmuir-Blodgett protein multilayers upon heating, file e268c4cd-4052-a6b7-e053-3a05fe0adea1
|
2
|
New Structural Features Appear in Thermally Treated Langmuir-Blodgett Protein Multilayers, file e268c4cd-8006-a6b7-e053-3a05fe0adea1
|
2
|
Emerging Advanced Techniques for the Protein Nanofilms Characterization, file 320b7cb7-49ec-489f-91a6-429c02b011d3
|
1
|
Increase of catalytic activity of lipase towards olive oil by Langmuir film immobilization of lipase, file e268c4c6-01d1-a6b7-e053-3a05fe0adea1
|
1
|
Protein nanotechnology for the new design and development of biocrystals and biosensors, file e268c4c6-0a5f-a6b7-e053-3a05fe0adea1
|
1
|
Nanoproteomics Enabling Personalized Nanomedicine, file e268c4c6-0a63-a6b7-e053-3a05fe0adea1
|
1
|
Synchrotron Diffraction of Multilayered LS PGA Films After Heating And Cooling, file e268c4c6-1ea2-a6b7-e053-3a05fe0adea1
|
1
|
Langmuir-Blodgett nanotemplates for protein crystallography, file e268c4c9-5c7b-a6b7-e053-3a05fe0adea1
|
1
|
SpADS and SNAP-NAPPA Microarrays towards Biomarkers Identification in Humans: Background Subtraction in Mass Spectrometry with E.coli Cell Free Expression System, file e268c4cc-af51-a6b7-e053-3a05fe0adea1
|
1
|
Totale |
1566 |