The goal of this paper is to present examples of families of homogeneous ideals in the polynomial ring over a field that satisfy the following condition: every product of ideals of the family has a linear free resolution. As we will see, this condition is strongly correlated to good primary decompositions of the products and good homological and arithmetical properties of the associated multi-Rees algebras. The following families will be discussed in detail: polymatroidal ideals, ideals generated by linear forms, and Borel-fixed ideals of maximal minors. The main tools are Gröbner bases and Sagbi deformation.
Linear resolutions of powers and products
Conca Aldo
2017-01-01
Abstract
The goal of this paper is to present examples of families of homogeneous ideals in the polynomial ring over a field that satisfy the following condition: every product of ideals of the family has a linear free resolution. As we will see, this condition is strongly correlated to good primary decompositions of the products and good homological and arithmetical properties of the associated multi-Rees algebras. The following families will be discussed in detail: polymatroidal ideals, ideals generated by linear forms, and Borel-fixed ideals of maximal minors. The main tools are Gröbner bases and Sagbi deformation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
(2017) Bruns Conca Linear Resolutions of Powers and Products .pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
298.77 kB
Formato
Adobe PDF
|
298.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.