The deep structure of scale-space of a signal refers to tracking the zero-crossings of differential invariants across scales. In classical approaches, feature tracking is performed by neighbor search between consecutive levels of a discrete collection of scales. Such an approach is prone to noise and tracking errors and provides just a coarse representation of the deep structure. We propose a new approach that allows us to construct a virtually continuous scale-space for scalar functions, supporting reliable tracking and a fine representation of the deep structure of their critical points. Our approach is based on a piecewise-linear approximation of the scale-space, in both space and scale dimensions. We present results on terrain data and range images.

A Virtually Continuous Representation of the Deep Structure of Scale-Space

PUPPO, ENRICO;ROCCA, LUIGI
2013

Abstract

The deep structure of scale-space of a signal refers to tracking the zero-crossings of differential invariants across scales. In classical approaches, feature tracking is performed by neighbor search between consecutive levels of a discrete collection of scales. Such an approach is prone to noise and tracking errors and provides just a coarse representation of the deep structure. We propose a new approach that allows us to construct a virtually continuous scale-space for scalar functions, supporting reliable tracking and a fine representation of the deep structure of their critical points. Our approach is based on a piecewise-linear approximation of the scale-space, in both space and scale dimensions. We present results on terrain data and range images.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/640368
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact