We present a new algorithm for refining a real interval containing a single real root: the new method combines characteristics of the classical Bisection algorithm and Newton's Iteration. Our method exhibits quadratic convergence when refining isolating intervals of simple roots of polynomials (and other well-behaved functions). We assume the use of arbitrary precision rational arithmetic. Unlike Newton's Iteration our method does not need to evaluate the derivative.

Quadratic Interval Refinement

ABBOTT, JOHN ANTHONY
2006

Abstract

We present a new algorithm for refining a real interval containing a single real root: the new method combines characteristics of the classical Bisection algorithm and Newton's Iteration. Our method exhibits quadratic convergence when refining isolating intervals of simple roots of polynomials (and other well-behaved functions). We assume the use of arbitrary precision rational arithmetic. Unlike Newton's Iteration our method does not need to evaluate the derivative.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/539417
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact