We explore and test the capabilities of B-Splines and Dynamic De Rezende-Ferreira five–factor model to replicate the main dynamics and stylized facts of futures curves in the Natural Gas Futures market. Furthermore, we discuss the joint use of these models with a Nonlinear Autoregressive Neural Network for parameters fine–tuning to forecast futures curves. The simulation study highlighted the effectiveness of the proposed framework; empirical results show that the joint use of B–Splines and neural networks provides highest overall performances on the Natural Gas futures market.

Modeling and Forecasting Natural Gas Futures Prices Dynamics: An Integrated Approach

Oleksandr Castello;Marina Resta
2022-01-01

Abstract

We explore and test the capabilities of B-Splines and Dynamic De Rezende-Ferreira five–factor model to replicate the main dynamics and stylized facts of futures curves in the Natural Gas Futures market. Furthermore, we discuss the joint use of these models with a Nonlinear Autoregressive Neural Network for parameters fine–tuning to forecast futures curves. The simulation study highlighted the effectiveness of the proposed framework; empirical results show that the joint use of B–Splines and neural networks provides highest overall performances on the Natural Gas futures market.
2022
9783030996376
9783030996383
File in questo prodotto:
File Dimensione Formato  
[Springer MAF2022 - Castello - Resta 2022] Modeling and Forecasting Natural Gas Futures Prices Dynamics - An Integrated Approach.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 588.24 kB
Formato Adobe PDF
588.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1171595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact