Characterizing neuronal networks activity and their dynamical changes due to endogenous and exogenous causes is a key issue of computational neuroscience and constitutes a fundamental contribution towards the development of innovative intervention strategies in case of brain damage. We address this challenge by making use of a multimodular system able to confine the growth of cells on substrate-embedded microelectrode arrays to investigate the interactions between networks of neurons. We observed their spontaneous and electrically induced network activity before and after a laser cut disconnecting one of the modules from all the others. We found that laser dissection induced de-synchronized activity among different modules during spontaneous activity, and prevented the propagation of evoked responses among modules during electrical stimulation. This reproducible experimental model constitutes a test-bed for the design and development of innovative computational tools for characterizing neural damage, and of novel neuro-prostheses aimed at restoring lost neuronal functionality between distinct brain areas.

A Multimodular System to Study the Impact of a Focal Lesion in Neuronal Cell Cultures

Averna A.;Care M.;Buccelli S.;Chiappalone M.
2019-01-01

Abstract

Characterizing neuronal networks activity and their dynamical changes due to endogenous and exogenous causes is a key issue of computational neuroscience and constitutes a fundamental contribution towards the development of innovative intervention strategies in case of brain damage. We address this challenge by making use of a multimodular system able to confine the growth of cells on substrate-embedded microelectrode arrays to investigate the interactions between networks of neurons. We observed their spontaneous and electrically induced network activity before and after a laser cut disconnecting one of the modules from all the others. We found that laser dissection induced de-synchronized activity among different modules during spontaneous activity, and prevented the propagation of evoked responses among modules during electrical stimulation. This reproducible experimental model constitutes a test-bed for the design and development of innovative computational tools for characterizing neural damage, and of novel neuro-prostheses aimed at restoring lost neuronal functionality between distinct brain areas.
2019
978-3-030-28041-3
978-3-030-28042-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1144835
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact