This book offers an up-to-date, comprehensive account of determinantal rings and varieties, presenting a multitude of methods used in their study, with tools from combinatorics, algebra, representation theory and geometry. After a concise introduction to Gröbner and Sagbi bases, determinantal ideals are studied via the standard monomial theory and the straightening law. This opens the door for representation theoretic methods, such as the Robinson–Schensted–Knuth correspondence, which provide a description of the Gröbner bases of determinantal ideals, yielding homological and enumerative theorems on determinantal rings. Sagbi bases then lead to the introduction of toric methods. In positive characteristic, the Frobenius functor is used to study properties of singularities, such as F-regularity and F-rationality. Castelnuovo–Mumford regularity, an important complexity measure in commutative algebra and algebraic geometry, is introduced in the general setting of a Noetherian base ring and then applied to powers and products of ideals. The remainder of the book focuses on algebraic geometry, where general vanishing results for the cohomology of line bundles on flag varieties are presented and used to obtain asymptotic values of the regularity of symbolic powers of determinantal ideals. In characteristic zero, the Borel–Weil–Bott theorem provides sharper results for GL-invariant ideals. The book concludes with a computation of cohomology with support in determinantal ideals and a survey of their free resolutions.

Determinants, Gröbner Bases and Cohomology

Aldo Conca;Matteo varbaro
2022-01-01

Abstract

This book offers an up-to-date, comprehensive account of determinantal rings and varieties, presenting a multitude of methods used in their study, with tools from combinatorics, algebra, representation theory and geometry. After a concise introduction to Gröbner and Sagbi bases, determinantal ideals are studied via the standard monomial theory and the straightening law. This opens the door for representation theoretic methods, such as the Robinson–Schensted–Knuth correspondence, which provide a description of the Gröbner bases of determinantal ideals, yielding homological and enumerative theorems on determinantal rings. Sagbi bases then lead to the introduction of toric methods. In positive characteristic, the Frobenius functor is used to study properties of singularities, such as F-regularity and F-rationality. Castelnuovo–Mumford regularity, an important complexity measure in commutative algebra and algebraic geometry, is introduced in the general setting of a Noetherian base ring and then applied to powers and products of ideals. The remainder of the book focuses on algebraic geometry, where general vanishing results for the cohomology of line bundles on flag varieties are presented and used to obtain asymptotic values of the regularity of symbolic powers of determinantal ideals. In characteristic zero, the Borel–Weil–Bott theorem provides sharper results for GL-invariant ideals. The book concludes with a computation of cohomology with support in determinantal ideals and a survey of their free resolutions.
2022
978-3-031-05479-2
978-3-031-05480-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1106135
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact