In this paper we discuss function spaces on a general noncompact Lie group, namely the scales of Triebel–Lizorkin and Besov spaces, defined in terms of a sub-Laplacian with drift. The sub-Laplacian is written as the (negative) sum of squares of a collection of left-invariant vector fields satisfying Hörmander’s condition. These spaces were recently introduced by the authors. In this paper we prove a norm characterization in terms of finite differences, the density of test functions, and related isomorphism properties.

Potential Spaces on Lie Groups

Bruno T.;Peloso M. M.;
2021-01-01

Abstract

In this paper we discuss function spaces on a general noncompact Lie group, namely the scales of Triebel–Lizorkin and Besov spaces, defined in terms of a sub-Laplacian with drift. The sub-Laplacian is written as the (negative) sum of squares of a collection of left-invariant vector fields satisfying Hörmander’s condition. These spaces were recently introduced by the authors. In this paper we prove a norm characterization in terms of finite differences, the density of test functions, and related isomorphism properties.
2021
978-3-030-72057-5
978-3-030-72058-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1092880
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact