The different types ofindustrial heterogeneous catalysis heterogeneous catalyst currently applied in the chemical industry are described. The catalytic activity is correlated to their main surface properties, which are the object of investigation based on surface science and theoretical calculations. Acidic, basic, oxidation, hydrogenation, and dehydrogenation catalysts are described. Metal, oxide, sulfide, and halide catalytic materials are considered. The practical need for promoters and stabilizers is underlined, frequently resulting in multicomponent and multiphasic catalytic systems. The complexity and multidisciplinarity of the field of heterogeneous catalysis research are emphasized, where collaboration among chemical engineers, material scientists, physical, inorganic, and organic chemists, and surface and material physicists is needed to fully understand phenomena and develop technologies. As a case study, the steam reforming process for producing hydrogen from natural gas is considered. The available data make it clear that knowledge on the molecular phenomena for most industrial processes is still largely incomplete and subject to debate. It is emphasized that surface science and surface chemistry, as well as computational studies, are needed to further improve existing technologies and to apply heterogeneous catalytic processes in the new era of industrial chemistry based on renewables.

From surface science to industrial heterogeneous catalysis

Busca G.
2020-01-01

Abstract

The different types ofindustrial heterogeneous catalysis heterogeneous catalyst currently applied in the chemical industry are described. The catalytic activity is correlated to their main surface properties, which are the object of investigation based on surface science and theoretical calculations. Acidic, basic, oxidation, hydrogenation, and dehydrogenation catalysts are described. Metal, oxide, sulfide, and halide catalytic materials are considered. The practical need for promoters and stabilizers is underlined, frequently resulting in multicomponent and multiphasic catalytic systems. The complexity and multidisciplinarity of the field of heterogeneous catalysis research are emphasized, where collaboration among chemical engineers, material scientists, physical, inorganic, and organic chemists, and surface and material physicists is needed to fully understand phenomena and develop technologies. As a case study, the steam reforming process for producing hydrogen from natural gas is considered. The available data make it clear that knowledge on the molecular phenomena for most industrial processes is still largely incomplete and subject to debate. It is emphasized that surface science and surface chemistry, as well as computational studies, are needed to further improve existing technologies and to apply heterogeneous catalytic processes in the new era of industrial chemistry based on renewables.
2020
978-3-030-46904-7
978-3-030-46906-1
File in questo prodotto:
File Dimensione Formato  
339671_1_En_33_Chapter_Proof.pdf

accesso chiuso

Descrizione: Contributo in volume
Tipologia: Documento in Pre-print
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1051051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact