Compression bound is probably the simplest yet theoretically grounded approach to MS and EE. The Compression bound [1–3] relies on a simple idea: if an algorithm is able to compress the data provided to learn a rule then the algorithm will generalize.

Compression Bound

Oneto L.
2020-01-01

Abstract

Compression bound is probably the simplest yet theoretically grounded approach to MS and EE. The Compression bound [1–3] relies on a simple idea: if an algorithm is able to compress the data provided to learn a rule then the algorithm will generalize.
2020
978-3-030-24358-6
978-3-030-24359-3
File in questo prodotto:
File Dimensione Formato  
Model+Selection+and+Error+Estimation+in+.pdf

accesso chiuso

Descrizione: Contributo in volume
Tipologia: Documento in versione editoriale
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1032183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact