In the last few decades fluorescence microscopy has been the most widely used microscopy technique and much effort has been put into the development of advanced super-resolution fluorescence microscopy techniques to circumvent the diffraction limit. Despite their well-established benefits, these techniques have to rely on the photo-physical properties of fluorescent molecules to obtain the desired contrast and spatial resolution. The labeling procedure may cause unwanted alterations in the sample. With the advent of ultrashort-pulsed laser sources, it became possible to better explore novel non-fluorescent-based contrast mechanisms that rely solely on intrinsic properties of the molecules of interest and which led to the development of label-free microscopy approaches. In this chapter, the imaging capabilities of absorption-based pump–probe microscopy are presented. This technique explores the ultrafast dynamic properties of the sample with high spatial and temporal resolution, as well as high sensitivity and chemical specificity. Two pulses, a pump and a probe, with a proper spatial and temporal overlap are used. The pump is absorbed, inducing a measurable change in the sample carrier population, which is then monitored by a delayed probe pulse. The development of new label-free approaches also represents a key challenge for the exploration of super-resolution approaches in non-fluorescence-based methods.

Label-Free Pump–Probe Nanoscopy

Zanini, Giulia;Diaspro, Alberto
2019-01-01

Abstract

In the last few decades fluorescence microscopy has been the most widely used microscopy technique and much effort has been put into the development of advanced super-resolution fluorescence microscopy techniques to circumvent the diffraction limit. Despite their well-established benefits, these techniques have to rely on the photo-physical properties of fluorescent molecules to obtain the desired contrast and spatial resolution. The labeling procedure may cause unwanted alterations in the sample. With the advent of ultrashort-pulsed laser sources, it became possible to better explore novel non-fluorescent-based contrast mechanisms that rely solely on intrinsic properties of the molecules of interest and which led to the development of label-free microscopy approaches. In this chapter, the imaging capabilities of absorption-based pump–probe microscopy are presented. This technique explores the ultrafast dynamic properties of the sample with high spatial and temporal resolution, as well as high sensitivity and chemical specificity. Two pulses, a pump and a probe, with a proper spatial and temporal overlap are used. The pump is absorbed, inducing a measurable change in the sample carrier population, which is then monitored by a delayed probe pulse. The development of new label-free approaches also represents a key challenge for the exploration of super-resolution approaches in non-fluorescence-based methods.
2019
978-3-030-21721-1
978-3-030-21722-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1018938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact