Chapter 27

Modulation of the Host-Parasite Redox Metabolism to Potentiate Antimalarial Drug Efficiency

Federica Turrini1* francesco.turrini@unito.it; Raffaella Boggia1; Paola Zunin1; Francesco Michelangelo Turrini2

1Department of Pharmacy
University of Genoa
Viale Cembrano, 4 I-16148 Genoa, Italy

2Department of Genetics, Biology and Biochemistry
University of Turin
Turin, Italy

Abstract

Artemisinin-based combination therapy (ACT) is nowadays the most effective treatment for *P. falciparum* malaria: artemisinin is the most active drug able to rapidly kill all erythrocyte stages of the malaria parasite. However, due to its short half-life, it requires the association with other long-acting drugs. Even if the exact mechanism of action of most antimalarial drugs is still unknown, many of these compounds are able to interact directly or indirectly with the redox metabolism of the parasite and/or the host, enhancing the effectiveness of the antimalarial therapy. This review focuses on many natural compounds, isolated mainly from plants, and used as traditional antimalarial treatments, known to possess a potent antimalarial activity (IC50 lower than 1 μg/mL). These compounds belong to some specific chemical family, mainly alkaloids, terpenoids, quassinoids, limonoids, and polyphenols, sharing some common chemical features. These natural molecules could offer new possibilities of combination therapies development as antimalarials when associated with artemisinin.

Keywords
Antimalarial drugs

Artemisinin-based combination therapy

Natural antimalarial compounds

Host-parasite redox metabolism

27.1. Introduction

27.1.1. Current Antimalarial Therapy

The natural antimalarial product artemisinin and its semi-synthetic derivatives represent the front-line treatment of *P. falciparum* malaria, as they are the most active antimalarials available, rapidly killing all blood stages of the malaria parasite. Artemisinins contain an endoperoxide bridge which plays a key role in the antimalarial activity with a mode of action starting from radical transient species initiated by the cleavage of this bridge. Few other natural compounds with such a peroxide bridge are known. On the other hand, the oxygen-oxygen bridge, being chemically unstable, determines a very short plasma half-life, constituting a major limiting factor to the use of artemisinin as a single drug [1]. To solve this problem, artemisinin was early used in combination with partner drugs characterized by much longer half-life. Artemisinin-based combination therapy (ACT) is the most effective treatment for *P. falciparum* malaria. Artemisinin derivatives such as dihydroartemisinin, artesunate, and artemether are combined with a partner drug such as lumefantrine, mefloquine, amodiaquine, and piperaquine. Since the introduction of artemisinin-combination therapies (ACTs), the overall number of malaria cases displayed a marked decline but, since the last few years, the rate of decline has stalled or even reversed in some regions [2].

The reasons of the recent increase of the number of malaria cases are plausibly multifactorial, including: insufficient investments for treatment and prevention, insecticide resistance, and antimalarial drug resistance. The relative role of each factor is undefined. In the Greater Mekong Sub-region, artemisinin resistance raised concern and is currently defined as “partial artemisinin resistance” in patients showing a delayed parasite clearance following treatment with an ACT. Notably, in the same region, resistance to the partner drugs is present. To rule out between artemisinin and partner drugs resistance in the development, treatment failure is obviously very difficult. Currently, no evidence of artemisinin resistance has been observed in African countries accounting for about 90% of malaria cases and deaths worldwide.
27.2. Interactions of Antimalarial Drugs with Host-Parasite Redox Homeostasis

27.2.1. Antimalarial Drugs Showing Redox Activity

Although the precise mechanism of action of most of the antimalarial drugs is still unknown, most of the antimalarial drugs have the potential of interacting directly or indirectly with redox metabolism of the parasite and/or of the host. A direct redox effect exerted by some antimalarial drugs on the host cells is clearly evidenced as hemolysis (oxidative damage and rapid destruction of erythrocytes leading to variable degrees of anemia) in G6PD-deficient individuals. Powerful antimalarial drugs such as primaquine, methylene blue, and sulfonamides cause acute and severe haemolytic anemia in G6PD-deficient subjects. In addition, popular antimalarial drugs and their combinations such as halofantrine, quinine, chloroquine, and chlorproguanil-dapsone have been associated with variable degrees of haemolytic anemia, generation of ROS, and depletion of erythrocyte GSH. Artemisinin and its derivatives also cause delayed hemolysis. The central role of the endoperoxide bridge of artemisinin and the generation of free radicals following its cleavage has been clearly established. Artemisinin activation needs iron provided by the host cells, resulting in the rapid generation of free radicals and the formation of heme-artemisinin adducts. To explain its high activity (IC50 ≈ 2 nM), specific molecular targets are expected to play a role in its mechanism of action.

27.2.2. Antimalarial Drugs Causing the Accumulation of Free Heme Through the Inhibition of Hemozoin Synthesis

Many antimalarial drugs including chloroquine, lumefantrine, mefloquine, amodiaquine, and piperaquine, show the capability to inhibit heme polymerization into form hemozoin, an inert crystal, in a specialized digestive vacuole of P. falciparum. Heme detoxification and its polymerization constitute a central step of the parasite metabolism, and its inhibition leads to parasite death. On the other hand, free iron released during haemoglobin digestion and heme constitute a powerful source of free radicals needing to be neutralized both by parasite and erythrocyte enzymes. Although the chemical and metabolic interactions occurring between artemisinin derivatives and heme polymerization inhibitory drugs are scarcely understood, it is interestingly to notice that the drugs that inhibit haemoglobin metabolism are the best candidates to be utilized in

27.3. Response of the Host Cell to Redox Changes Exerted by Parasite Growth and/or Antimalarial Drugs

Redox metabolism of the parasitized erythrocyte depends on the equilibrium between the antioxidant defenses of both erythrocyte and parasite and on the free radicals produced by the parasite and by the erythrocyte [14]. Iron plays a central role in free radical production in the parasite through heme digestion and in the parasitized erythrocyte which accumulates large amounts of denatured heme generated by the oxidative stress exerted by the parasite [15, 16].

As an evidence of this unstable equilibrium, a large number of mutations have been selected by malaria such as G6PD deficiency (defect of production of NADPH), sickle cell anemia, thalassemias, HbC, HbE, and many other heme disorders triggering oxidative stress through heme denaturation and plausibly amplifying the redox stress exerted by the intracellular parasite. More than 500 million people living in malaria endemic areas are affected by one or more of those mutations conferring variable levels of protection to severe malaria [17, 18].

It has been demonstrated that mild oxidative stress exerted by malaria parasite activates a specific redox signaling pathway in the host erythrocyte inducing the Tyr phosphorylation of some membrane proteins [19] which, in turn, appear to be essential for the remodelling of the parasitized erythrocyte membrane needed to activate new functions essential for the parasite growth such as import of nutrients and insertion of parasite proteins binding to endothelium [20]. The activation of Syk kinase, constituting a key element of such pathway, has been directly implicated both in the egress of merozoites and in the infection of new erythrocytes occurring after the 48-hours life cycle of the parasite. A new class of drugs has been developed to interfere with this pathway revealing good antiplasmodial efficacy [21].

Targeting the redox metabolism of P. falciparum by antimalarial drugs is believed to create an overload of oxidative stress leading to parasite death [22]. Anyway, much more complex mechanism of action appears to be involved in the interactions occurring between parasite and host cell metabolism and in the interference exerted by a large number of redox active antimalarial drugs (Fig. 27.1).
27.4. Natural Antimalarial Compounds

In addition to artemisinin, a large number of natural compounds present in plants, are known to possess a potent antimalarial activity. In some cases, their clinical efficiency and activity have been demonstrated by their use as traditional antimalarial treatments.

A comprehensive list of plant compounds with antimalarial activity, quantified as in vitro IC50, is reported in Table 27.1. Only the compounds whose IC50 is lower than 1 \(\mu \text{g/mL} \) have been selected.

It shall be noticed that most of these compounds belong to the families of alkaloids, in particular, indole and naphthoisoquinoline alkaloids, with few exceptions including sequiipertenes, quassinoids, limonoids, and a polyphenolic compound (ellagic acid).

27.4.1. Alkaloids

Alkaloids are one of the most important antimalarial compound classes known from ancient time. Quinine, which represents the first antimalarial natural drug used, belongs to this group. It is a quinidine alkaloid isolated from the bark of \textit{Cinchona succirubra} and it has been used for more than three centuries for the treatment of malaria [23]. Numerous studies reported in literature described the significant antimalarial activity of over 100 natural alkaloids, which have been considered more potent than chloroquine [24]. Some of the active reported alkaloids can be also grouped according to their structural chemical classes. In particular, indole alkaloids which from a chemical point of view contain an important indole group in their structure and derive from the amino acid tryptophan, represent one of the largest class of alkaloids grouping together many antimalarial compounds [25]. The naphthoisoquinoline alkaloids represent as well potential antimalarial compounds. These compounds are secondary metabolites naturally present mainly in some plants of the Ancistrocladaceae and Dioncophyllaceae families. Structurally, they are chiral molecules characterized by the presence of \(\text{C}_{\text{\texttau}}-\text{C} \) and \(\text{C}_{\text{\texttau}}-\text{N} \) bonds typical of the naphthalene and isoquinoline structures contained in them. In addition to the antimalarial activity, these alkaloids have shown many biological activities including anti-leishmanial, anti-trypanosomal, fungicidal, insecticidal, and larvicidal [26].
27.4.2. Sesquiterpenes

An important medicinal plant used from ancient time because of its content in antimalarial artemisinins is the *Artemisia annua*, an herb used in Chinese traditional medicine. As already mentioned, artemisinin-combination therapies (ACTs) are nowadays the standard treatment in the world against *P. falciparum* [1,27]. Chemically, artemisinin belongs to sesquiterpenes, namely terpenes characterized by three isoprene units (C_{15}H_{24}), which represent a very important class of secondary metabolites obtained from plants. In addition to artemisinin, several other sesquiterpene compounds have shown a potentially antimalarial activity [25].

Structurally, as already mentioned, artemisinin presents a characteristic endoperoxidic group which is considered responsible for its activity. However, the other sesquiterpene compounds reported in Table 27.1, do not contain the typical peroxide group of artemisinin. Interestingly, this chemical group is found in another antimalarial compound, named Plakortin, recently isolated from a tropical sponge instead of from plants. It is a polyketide endoperoxide isolated from the sponge *Plakortis simplex* and it has shown antiparasitic activity against *P. falciparum*. It has been shown that the activity of this compound also depends on the functionality of the peroxide [28].

27.4.3. Quassinoids

Quassinoids are related to terpenes group too. They are a class of degraded triterpenes and most of them are characterized by a C-20 and δ-lactone skeleton [22]. Concerning the quassinoids, in particular, three compounds have reported significant antimalarial activity with very low IC50 values as a result of our free research: Ailanthone and 6-alpha-Tigloyloxychaparrinone isolated from *Ailanthus altissima* and Simalikalactone D obtained from the roots of *Simabaorinocensis*. The presence of the ester function seems to be important for in vitro antiplasmodial activity of these compounds [29].

27.4.4. Limonoids

Limonoids present a similar structure to Quassinoids. These compounds, classed as tetranortriterpenes, present different variations of the furanolactone core structure. *Meliaceae*, *Cucurbitaceae*, and *Rutaceae* are the plant families richer of these phytochemical compounds, some of which have demonstrated different biological properties such as antimalarial activity [23].
27.4.5. Polyphenolic Compounds

As regards the polyphenolic compounds, only the ellagic acid (EA) has shown a very interesting IC50 value. This is an antioxidant molecule which chemically belongs to the hydrolysable tannins class, known for its antimalarial activity. EA is derived from the hydrolysis of ellagitannins (ETs). ETs are hydrolyzed, chemically by acids or bases or enzymatically, into hexahydroxy diphenic acid, which spontaneously tends to EA [30]. EA explains its antiplasmodial activity by interfering with haemoglobin metabolism and, in particular, inhibiting the β-haematin formation [31]. For these reasons, ellagic acid could be a potential candidate to be utilized in combination with artemisinin in ACTs.

Table 27.1 Summary of antimalarial natural compounds selected for their activity “in vitro” (IC50 < 1 μg/mL)

<table>
<thead>
<tr>
<th>UPAC name</th>
<th>Chemical structure</th>
<th>Chemical group</th>
<th>Botanical source</th>
<th>Anti-malarial activity</th>
<th>IC50 (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2S,3R,12bS)-3-ethenyl-2-[(1S)-2-methyl-1,3,4,9-tetrahydropyrido[3,4-</td>
<td>Indole alkaloids</td>
<td>Strychnos usambarensis</td>
<td>In vitro [32]</td>
<td>0.48 (20) 0.16</td>
<td></td>
</tr>
<tr>
<td>Methyl (1S,9S,14Z,15R)-14-ethyldiene-6-hydroxy-2-methyl-18-oxa-2,12-diazacycloco[13.3.2.01,9.3.8.09.16.012.19]icos-3,5,7-triene-16-carboxylic acid</td>
<td>Indole alkaloids</td>
<td>Picralima nitida</td>
<td>In vitro [34]</td>
<td>0.45 (0.73</td>
<td></td>
</tr>
<tr>
<td>19α,20α)-16-(Methoxy carbonyl)-19-methyl-3,4,5,6,16,17-hexadehy dro-18-oxohimban-4-ium</td>
<td>Indole alkaloids</td>
<td>Picralima nitida</td>
<td>In vitro [34]</td>
<td>0.95 (0.66</td>
<td></td>
</tr>
<tr>
<td>3,6-dihydro-9,10-dimethoxybenzo[g]-1,3-benzodioxolo[5,6-</td>
<td>Indole alkaloids</td>
<td>Enantia chlorantha</td>
<td>In vitro [36]</td>
<td>0.14 (0.15</td>
<td></td>
</tr>
<tr>
<td>8-methylindolo[3,2-b]quinoline</td>
<td>Indole alkaloids</td>
<td>Quassia indica</td>
<td>In vitro and in vivo [37]</td>
<td>0.19 (0.05</td>
<td></td>
</tr>
</tbody>
</table>

For these reasons, ellagic acid could be a potential candidate to be utilized in combination with artemisinin in ACTs.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Type</th>
<th>Source</th>
<th>In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,8,9-trimethoxy-5-methylbenzo[c]phenanthridin-5-ium-2-ol</td>
<td>Indole alkaloids</td>
<td>Fagara zanthoxyloides</td>
<td>0.01</td>
</tr>
<tr>
<td>2,9,10-tetramethoxy-5,6-dihydroisoquinolin-2,1-b]-isoquinolin-7-ium-3-ol</td>
<td>Indole alkaloids</td>
<td>Enantia chlorantha; Penianthus longifolius</td>
<td>0.42; 1.61</td>
</tr>
<tr>
<td>2,3,9,10-tetramethoxy-5,6-dihydroisoquinolin-2,1-b]-isoquinolin-7-ium</td>
<td>Indole alkaloids</td>
<td>Enantia chlorantha; Penianthus longifolius</td>
<td>0.28; 0.16</td>
</tr>
<tr>
<td>Methyl 1(1R,9S,11S,14Z,15S,17S,19S)-19-[(acetyl oxy)methyl]-14-methyldiene-18-oxa-2,12-diazahexacyclo[9.6.1.1^{9,15}0.0^{19,9}0.0^{12,17}10a,12b]-7,7,14,19-tetrahydro-9oxa-6a,13-diaza-indeno[2,1-a]anthracene-11-carboxylic acid methyl ester</td>
<td>Indole alkaloids</td>
<td>Picralima nitida</td>
<td>0.44; 0.53</td>
</tr>
<tr>
<td>Methyl 2-(1R,2S,5R,6R,13S,14S,16S)-14-(acetyl oxy)-6-(furan-3-yl)-15,17-diazatetraacyclo[11.3.1.0^{2,11}0.0^{5,10}10a,12b,13,19]-16,17-dihydro-15-oxynaptho[2,1-f]pyrrolo[3,2-c]pyridine</td>
<td>Limonoids</td>
<td>Khaya senegalensis</td>
<td>0.12</td>
</tr>
<tr>
<td>4aR,6R,6aS,6bR,7aS,10S,10aS,12aR,12bR]-10-(3-Furyl)-4,4,6a,10a,12b-pentamethyl-1,3,8-dioxo-5,5,4a,5,6,6a,7a,8,10,10a,11,12,12a,12b-tetradecahydro-3,4-dihydro-isochromen-6-yl acetate</td>
<td>Limonoids</td>
<td>Azadirachta indica; Cedrela odorata; Khaya grandifoliola</td>
<td>0.03; 0.02; 1.25</td>
</tr>
<tr>
<td>2-[(3S)-6,8-dimethoxy-1,3-dimethyl-3,4-dihydroisoquinolin-7-yl]-8-methoxy-3-methylnaphthalen-1-ol</td>
<td>Naphthoisoquinolines</td>
<td>Ancistrocladustanzaniensis</td>
<td>0.3; 1.9</td>
</tr>
<tr>
<td>3R,5S)-7-(1-hydroxy-8-methoxy-3-methylnaphthalen-2-yl)-8-methoxy-</td>
<td>Naphthoisoquinolines</td>
<td>Ancistrocladustanzaniensis</td>
<td>0.1</td>
</tr>
<tr>
<td>Substances</td>
<td>Source</td>
<td>Activity</td>
<td>Concentration</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1,2,3-trimethyl-1,3,4-dihydro-1H-isoquinolin-6-ol</td>
<td></td>
<td>In vitro</td>
<td>4.2 (W2)</td>
</tr>
<tr>
<td>2-[(1R,3S)-6,8-dimethoxy-1,2,3-trimethyl-1,3,4-dihydro-1H-isoquinolin-7- yl]-8-methoxy-3-methylnaphthalen-1-ol</td>
<td></td>
<td>In vitro</td>
<td>0.7 (W2)</td>
</tr>
<tr>
<td>1R,3R)-7-[(5-hydroxy-2-(hydroxymethyl)-4-methoxy naphthalen-1-yl)-1,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-8-ol</td>
<td></td>
<td>In vitro and in vivo</td>
<td>0.00 (D6)</td>
</tr>
<tr>
<td>1R,3R)-5-(5-hydroxy-4-methoxy-2-methylnaphthalen-1-yl)-1,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-8-ol</td>
<td></td>
<td>In vitro and in vivo</td>
<td>0.01 (F32)</td>
</tr>
<tr>
<td>1R,3R)-7-[(2-hydroxymethyl)-4,5-dimethoxy naphthalen-1-yl]-1,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-8-ol</td>
<td></td>
<td>In vitro</td>
<td>0.00 (F32)</td>
</tr>
<tr>
<td>2,3,7,8-Tetrahydroxy chrysochromeno[5,4,3-cde]chromene-5,10-dione</td>
<td></td>
<td>In vitro</td>
<td>0.10 (W2)</td>
</tr>
<tr>
<td>[1β,11β,12α]-1,11,12-Trihydroxy-11,20-epoxy picrasa-3,13(21)-dieno-2,16-dione</td>
<td></td>
<td>In vitro</td>
<td>0.03 (F32)</td>
</tr>
<tr>
<td>[1β,11β,12α,15β]-1,11,12,15-Trihydroxy-2,16-dioxy-13,20-epoxy picrasa-3- en-15-yl (2R)-2-methylbutanoate</td>
<td></td>
<td>In vitro and in vivo</td>
<td>0.00 (D6)</td>
</tr>
<tr>
<td>(3aR,4R,6R,7E,10Z,11α)-6-hydroxy-6,10-dimethyl-3-methyldiene-2,9-</td>
<td></td>
<td>In vitro and in vivo</td>
<td>0.00 (W2)</td>
</tr>
<tr>
<td>1[1β,11β,12α,15β]-1,11,12,15-Trihydroxy-2,16-dioxy-13,20-epoxy picrasa-3- en-15-yl (2R)-2-methylbutanoate</td>
<td></td>
<td>In vitro</td>
<td>0.33 (F32)</td>
</tr>
<tr>
<td>Compound</td>
<td>Class</td>
<td>Source</td>
<td>Assay</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Dixo-dene-3a,4,5,11a-tetrahydrocyclodeca[b]furan-4-yl-2-methylpropanoate</td>
<td>Sesquiterpenes</td>
<td>Dicoma tomentosa</td>
<td>In vitro [60]</td>
</tr>
<tr>
<td>[(3aR,4R,6E,10Z,11aR)-6-formyl-4-hydroxy-3-methylidene-2-oxo-3a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-10-yl]methyl acetate</td>
<td>Sesquiterpenes</td>
<td>Artemisia annua</td>
<td>In vitro [61]</td>
</tr>
<tr>
<td>4S,5R,8S,9R,12S,13R)-1,5,9-Trimethyl-11,14,15,16-tetraoxatetrayclo[10.3.1.04,13.08,13]hexadecan-10-one</td>
<td>Sesquiterpenes</td>
<td>Artemisia annua</td>
<td>In vitro [61]</td>
</tr>
<tr>
<td>Methyl12-[(3R,4R,6S)-ethyl-6-[(E,2R)-2-ethylhex-3-enyl]-6-methyldioxan-3-yl]acetate</td>
<td>Endoperoxylketal polyketides</td>
<td>Plakortiscfr. Simplex</td>
<td>In vitro [63, 64]</td>
</tr>
</tbody>
</table>

214 n.a not available

215 **27.5. Conclusions**

216 This work has revealed a wide range of natural products with potent antimalarial activity, belonging to some specific chemical group, mainly alkaloids, terpenoids, quassinoids, limonoids, and polyphenols.

217 Selected compounds from a physicochemical point of view are characterized for larger molecular mass and higher hydrophobicity index (logP). These properties may be considered necessary for the achievement of the intracellular target [66]. Furthermore, most of these compounds are hydrogen bond acceptors. Structurally, there are recurrent chemical groups that share these molecules. Most compounds present a rigid scaffold of at least 3 cycles which confers high rigidity to the molecule. However, further structure-activity relationship studies are necessary for the possible identification of a pattern of functional groups (pharmacophore) responsible for the antimalarial activity.
Many of the selected compounds, including artemisinin, are likely expected to exert redox activity in biological systems, but, in most instances, a direct evidence is missing. At this regard, it should be considered that the erythrocyte-plasmodium system represents a unique environment combining two interconnected oxidative defense systems, extremely high concentration of heme iron contained in the host compartment and intense hemoglobin digestion and heme detoxification in the parasite [22]. Experiments to test the interference with the host-parasite redox state of any potential antimalarial compounds should be, therefore, tested in infected erythrocytes at different development stages. It should be also noticed that, the antimalarial mechanism of action of redox compounds is complex involving very sensitive host targets [67] that could be considered for the screening of antimalarial drug candidates.

References

compounds with antiplasmodial activity: ellagic acid and 3,4,5-
trimethoxyphenyl(6’-O-alloyl)-beta-D-glucopyranoside. Planta Med
69(2):162–164

activities of strychnos alkaloids and extracts against Plasmodium falciparum.
Antimicrob Agents Chemother 43(9):2328–2331

Wright CW, Bray DH, O’Neill MJ, Warhurst DC, Phillipson JD, Quetin-
Leclercq J, Angenot L (1991) Antiamoebic and antiplasmodial activities of

Adebayo JO, Krettli AU (2011) Potential antimalarials from Nigerian plants: A

Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of
Alstoniascholaris bark for in vivo antimalarial activity in mice. J
Ethnopharmacol 29(1): 51–57

Elford BC (1986) Le-Glutamine influx in malaria-infected erythrocytes: a

Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:
Amastigote inhibition and mode of action of berberine. Experim Parasitol
60(3): 404–413

Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of
Cutaneous Leishmaniasis in Murine Model by Alcoholic Extract of

Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR
(2005) Effects of Root Extracts of Fagarazanthoxyloides on the In Vitro
Growth and Stage Distribution of Plasmodium falciparum. Antimicrob
Agents Chemother 49: 264–268

Antiplasmodial activity of seven plants used in African folk medicine.
Indian J Pharmacol 36: 245–246

Neuraminidase inhibitory activities of quaternary isoquinoline alkaloids from Corydalts turtschaninovii rhizome. Bioorg Med Chem 22: 6047–6052

Limonoids from Khaya senegalensis. Phytochemistry 49: 1769–1772

Antimalarial activities of gedunin and 7-methoxygedunin and synergistic activity with dillapiol. Ann Appl Biol 143(2): 135–141

Ancistrotanzanine C and Related 5,1′- and 7,3′-Coupled Naphthylisoquinoline Alkaloids from Ancistrocladustan zaniensis. J Nat Prod 67(5): 743–748

Activities of extracts and naphthylisoquinoline alkaloids from Triphyophyllum peltatum, Ancistroclus abbreviatus and
Ancistrocladus barteri against Plasmodium berghei (Anka strain) in vitro. J Ethnopharmacol 46(2) 115–120

Habropetaline A, an antimalarial naphthylisoquinoline alkaloid from Triphyophyllum peltatum. Phytochemistry 62: 345–349

