Phase-sensitive terahertz imaging using room-temperature near-field nanodetectors

MARTA C. GIORDANO,1,† LEONARDO VITI,1,† OLEG MITROFANOV,2,3 AND MIRIAM S. VITIELLO1,*

1NEST, CNR—Istituto Nanoscienze and Scuola Normale Superiore, piazza San Silvestro 12, I-56127 Pisa, Italy
2University College London, Electronic and Electrical Engineering, London WC1E 7JE, UK
3e-mail: o.mitrofanov@ucl.ac.uk
*Corresponding author: miriam.vitiello@sns.it
Received 24 January 2018; revised 12 March 2018; accepted 27 March 2018 (Doc. ID 320535); published 17 May 2018

Imaging applications in the terahertz (THz) frequency range are severely restricted by diffraction. Near-field scanning probe microscopy is commonly employed to enable mapping of the THz electromagnetic fields with sub-wavelength spatial resolution, allowing intriguing scientific phenomena to be explored, such as charge carrier dynamics in nanostructures and THz plasmon-polaritons in novel 2D materials and devices. High-resolution THz imaging, so far, has relied predominantly on THz detection techniques that require either an ultrafast laser or a cryogenically cooled THz detector. Here, we demonstrate coherent near-field imaging in the THz frequency range using a room-temperature nanodetector embedded in the aperture of a near-field probe, and an interferometric optical setup driven by a THz quantum cascade laser. By performing phase-sensitive imaging of strongly confined THz fields created by plasmonic focusing, we demonstrate the potential of our novel architecture for high-sensitivity coherent THz imaging with sub-wavelength spatial resolution.

1. INTRODUCTION

Sub-wavelength resolution near-field imaging techniques in the infrared (IR) and terahertz (THz) ranges have recently shown incredible potential in a variety of application fields ranging from fundamental light–matter interaction studies in nanostructures [1–5] to biological and chemical sciences [6–9], where high-sensitivity combined with non-invasive sub-wavelength probing is required. The spectrum of THz near-field imaging applications is growing, and it includes nanoscale mapping of plasmons in emerging bi-dimensional (2D) atomic materials (topological insulators [10], phosphorene [3], silicene [11], and their combined van der Waals heterostructures [12]), fundamental studies of plasmonic devices, and coherent probing of sub-wavelength size (<λ/10) resonators [13–16]. This research feeds into the engineering of novel THz optical components, such as negative refractive index materials, magnetic mirrors, and filters [17–19].

To date, different near-field probing schemes have been developed and implemented for imaging systems [13–28], exploiting either scattering tip probes (known as apertureless probes) [23–28] for achieving nanometer-level resolution, or sub-wavelength size metallic aperture probes (a-SNOM) [14–16,22], electro-optic probes [18,20], and miniaturized photoconductive detectors [13,19]. The latter approaches are highly versatile and robust for large-scale (100 μm–3 mm scale) near-field sub-wavelength resolution THz microscopy and spectroscopy, and they have enabled investigations of macroscopic THz devices (including metamaterials [17–19], waveguides [29], and resonators [13–16]) and inspection of biological tissues [6]. Coherent detection, which captures the intensity and phase information, proved essential for THz near-field microscopy. Most near-field mapping experiments at THz frequencies reported so far utilized the phase-sensitive THz time domain spectroscopy (TDS) techniques, which, however, require costly ultrafast lasers [30]. In the visible and near/mid-IR frequency ranges, alternative coherent architectures have been devised, including interferometric and holographic approaches [31]. Coherent detection in the latter cases is typically achieved by converting or scattering the evanescent waves from the near-field region into propagating waves, and then detecting them in the far-field using interferometers.

Here, we demonstrate phase-sensitive near-field THz imaging at room temperature enabled by a simple and versatile interferometric optical setup with a THz quantum cascade laser (QCL) and an aperture-type near-field probe. A nanowire (NW) thermo-electric detector is integrated into the aperture, enabling sub-wavelength resolution and coherent gain for improved sensitivity. We thus eliminate the cost and complexity of the TDS system by employing a THz QCL and a room-temperature detector, achieving phase-sensitive near-field imaging with sub-wavelength resolution. The imaging system architecture can be exploited with other coherent THz sources and a range of different nanoscale THz detectors. Additionally, the same interferometric setup enables spectral analysis of the THz field.

OCIS codes: (230.0040) Detectors; (260.3090) Infrared, far; (180.4243) Near-field microscopy; (110.6795) Terahertz imaging.

https://doi.org/10.1364/OPTICA.5.000651
2. EXPERIMENTAL METHOD

In aperture-type microscopy, spatial resolution is determined by the aperture size, \(a \); however, the possibility to achieve resolution smaller than 1/100 of the wavelength is practically limited by strong suppression of aperture transmission \(T \), which follows the power law \(T \sim a^6 \) \([32,33]\). A promising approach for improving spatial resolution in a-SNOM schemes relies on the reduction of the detector size, and placing it in the proximity of the aperture \([33]\). We recently demonstrated that the dramatic drop in aperture transmission can be mitigated by integrating a THz thermoelectric nanodetector \([34,35]\) inside the sub-wavelength aperture. The sensitivity of such a near-field probe rises due to detection of the evanescent components of the aperture transmitted wave \([33,34]\).

To address the need for coherent THz imaging, we designed a simple interferometric optical system shown in Fig. 1(a). We exploited a QCL operating at 3.4 THz, which was driven in the pulsed mode regime (2% duty cycle) to deliver only 28 \(\mu \)W of average power. The QCL beam was collimated with a Picarin lens (L) having focal length of 25 mm. The beam was then split into two, \(I_1 \) and \(I_2 \): one for illumination of the sample and the other for providing reference for coherent detection. A nanoscale THz detector was embedded into a near-field probe, which was positioned in close proximity of the sample, as shown in the inset of Fig. 1(a), with the reference beam illuminating the probe from its back side. The THz field of the sample then couples into the aperture of the probe, where it interferes with the reference field. The detector therefore senses the superposition of the local field collected by the probe aperture and the reference field. The phase difference between the two fields can be adjusted by an optical delay stage inserted into the reference beam path.

In our experiment, the collimated THz beam was directed towards an undoped Si wafer acting as a beam splitter (BS). The transmitted beam was then focused in the sample region with a parabolic mirror \((P_1) \) having focal length of 25 mm. The reflected beam (reference beam) reached the optical delay stage, which consisted of two pairs of perpendicular flat mirrors: \(M_2, M_4 \) (fixed) and \(M_3, M_5 \) (movable). Translation of the delay stage \((\Delta s) \) enabled tuning the optical path length, thus varying the relative phase between the reference beam and the illumination beam. A parabolic mirror \((P_2) \) with the focal length of 50 mm focused the reference beam in the sample region from the opposite side [see Fig. 1(a)].

In the sample region, the near-field probe was supported by an automated \(xy \)-translation stage, which enabled positioning and scanning of the probe in the focal plane, and by a \(z \)-axis

![Fig. 1.](image)

(a) Schematics of the interferometric THz near-field microscopy setup. The inset shows the near-field probe geometry. (b) (upper left and lower left) Scanning electron microscope (SEM) images of the near-field probe with an embedded FET-based THz nanodetector (view angles of 0° and 70°). A top gate contact (G) defines the aperture; the aperture size is 18 \(\mu \)m x 18 \(\mu \)m; the InAs nanowire detector is at the aperture center; and the source (S) and drain (D) contacts are isolated from the gate with a layer of SiO2. (upper right) Schematic diagram of the cross-sectional view of the detector. (c) Spatial distribution of the detected photovoltage \(\Delta u_1 \) for the front \((I_1) \) and (d) back side \((I_2) \) illumination. (e) Interference trace acquired when the front and the reference beams simultaneously illuminate the near-field probe positioned in the focal plane at the center of the 2D scan area, and the relative phase is tuned using the delay stage.
transformation stage for controlling the sample-probe separation. The near-field probe had an 18 μm input aperture and an InAs nanowire-based THz detector embedded inside the aperture [Fig. 1(b)], as described in Ref. [34]. The detector is sensitive to the THz waves incident from both sides of the aperture [34], and therefore it allows us to obtain a coherent superposition of the sample and the reference field, as well as the intensity maps of the sample field \((I_1)\) and the reference beam \((I_2)\).

The THz detector, in our experiment, was a field-effect transistor (FET), fabricated by nano-lithography, with an epitaxially grown InAs NW as the active channel (see Supplement 1). The NW was integrated within the aperture area with the source and drain contacts connected to its ends. The side of the NW opposite of the source contact was covered by a trapezoid-shaped extension from the aperture edge, serving as the transistor gate [Fig. 1(b)]. This geometry asymmetrically feeds the incident THz radiation into the FET channel and induces a temperature gradient \(\Delta T\) along the NW [34]. The break in the symmetry enables thermoelectric THz detection with the possibility to enhance the device responsivity by applying a gate voltage [34]. A steady-state thermoelectric voltage \(\Delta \text{V} = S_0 \Delta T\) (where \(S_0\) is the Seebeck coefficient) arises across the channel between the source and drain electrodes. This voltage is proportional to the intensity of the coherent superposition of the THz field coupled through the aperture and the reference field.

3. RESULTS

Figures 1(c) and 1(d) show profiles of the THz beam incident on the aperture \((I_1)\) and the reference beam incident on the back side of the detector \((I_2)\). The profiles of \(I_1\) and \(I_2\) had elliptical shapes in the focal plane. The distribution of \(I_1\) showed the incident beam close to the center of the scanned area. The distribution of the reference beam, \(I_2\), was wider, and it was slightly displaced (approximately 100 μm) with respect to the center. The beam size, defined as the full width at half-maximum (FWHM) of the optical signal retrieved along the x and y axes, was about 400 μm × 260 μm for the incident front beam \((I_1)\) and 520 μm × 280 μm for the reference beam \((I_2)\). The two beams interfered within the area of the overlap. The total power in the incident front beam and in the reference beam, measured with a pyroelectric detector, was \(P_{\text{tot}(1)} = 300 \text{nW}\) and \(P_{\text{tot}(2)} = 600 \text{nW}\), respectively. We then determined the responsivity according to the equation

\[
R_i = \frac{\Delta \text{V}_{\text{tot}}}{P_{\text{tot}(i)}} \times \frac{S_{\text{tot}(i)}}{S_a} \quad \text{with} \quad i = 1, 2
\]

Here the letter \(i\) distinguishes between the front \((i = 1)\) and the reference \((i = 2)\) beam. \(S_{\text{tot}(i)}\) is the beam spot area, approximated as the area of an ellipse having the two axes corresponding to the radii of the Gaussian profile \(r_i = \frac{\text{FWHM}_{x,y}}{2.355}\) of the intensity maps shown in Figs. 1(c) and 1(d), and \(S_a\) is the aperture area [34]. The detected optical intensity maps [Figs. 1(c) and 1(d)] thus allow evaluation of the maximum responsivities \(R_1 = 9.7 \text{ V/W}\) and \(R_2 = 36.5 \text{ V/W}\) on the aperture side and on the back side, respectively. The corresponding maximum signals were \(\Delta \text{V}_1 = 16 \text{nV}\) and \(\Delta \text{V}_2 = 86 \text{nV}\).

The interference between the two beams produced a superposition photovoltage signal \(\Delta \text{V}_{\text{tot}}\), which varied in the range of 50–140 nV as a function of the optical path difference \(\phi\) [Fig. 1(e)], following a sinusoidal function with periodicity \(\phi = 43.5 \mu\text{m}\), which equals one half of the QCL wavelength \((\lambda_{\text{QCL}}/2)\). The maxima and minima correspond to the constructive and destructive interference between the two beams illuminating the near-field probe on the aperture and on the reference sides, respectively. Since the periodic behavior was stable over a phase delay shift exceeding 1 mm (Supplement 1, Fig. S1a), the detected interferogram was additionally exploited to extract the Fourier spectrum of the THz QCL source (Supplement 1, Figs. S1b and S1c). This represents a further functionality of this simple interferometric setup that can find applications in QCL characterization.

The periodic behavior also clearly demonstrates the coherent superposition of the two beams locally detected by the near-field probe. Indeed, the total intensity can be written as the superposition of the two beams \((I_1 + I_2)\) as

\[
I_{\text{tot}} = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\delta \phi),
\]

where the last term accounts for the coherent optical interference between the two beams with a phase difference \(\delta \phi\), set by the delay stage, and the parameter \(\gamma\) describes the degree of coherence of the two beams in the range \(0 \leq \gamma \leq 1\). The detected photovoltage signal \(\Delta \text{V}_{\text{tot}}\) is related to the total optical intensity \(I_1\) and \(I_2\) coupled to the device [34] as

\[
\Delta \text{V}_{\text{tot}} = R_1 I_1 + R_2 I_2 + 2\sqrt{R_1 R_2} \cos(\delta \phi).
\]

From this equation the oscillation amplitude of the interference pattern [Fig. 1(e)] can be defined as a coherent photovoltage, \(\Delta u_c = \Delta \text{V}_{\text{tot}} - \Delta \text{V}_{\text{out-of-phase}} = 90 \text{nV}\), which corresponds to the coherent term of the total detected photovoltage \(\Delta \text{V}_{\text{tot}} = 4\gamma \sqrt{R_1 I_1 R_2 I_2}\), and is proportional to the coherent component of the optical intensity.

Therefore the coherent signal \(\Delta \text{V}_{\text{tot}}\) carries the information about the amplitude of the electric field proportional to \(\sqrt{R_i}\) and the phase relative to the reference beam \(\phi\). To make the coherent signal independent of the spatial variation of the reference beam, the intensity distribution \(I_2\) and the phase \(\phi\) need to remain constant within the image area.

To demonstrate phase-sensitive THz imaging with spatial resolution beyond the diffraction limit, we selected an object that produces both a phase variation across the image area and a sub-wavelength size amplitude variation. Such a field distribution can be formed by focusing the THz beam into a deeply sub-wavelength volume with surface plasmon guiding along two metallic needles [36,37]. We employed two PtIr needles having a diameter of 500 μm and mechanically polished to obtain a tip apex radius smaller than 1 μm. The needles were fixed at a relative angle of \(\sim 60^\circ\) and at a relative distance between their tips of \(\sim 10 \mu\text{m}\) [37], by means of a micrometer-controlled stage. This twin-needle configuration was oriented in the \(yz\) plane and positioned in front of the aperture [Fig. 2(a)].

We first verified that the interference of the incident and the reference beams did not produce strong variations of phase and amplitude within the image area. Figures 2(b) and 2(c) show the zoomed 2D profiles of the detected photovoltage \(\Delta \text{V}_{\text{tot}}\), generated by the two waves for different positions of the delay stage \(s\), corresponding to a maximum and a minimum of the interference pattern [Fig. 1(e)] measured at the image center. These delay stage positions will be referred to as the in-phase and out-of-phase conditions, respectively. The in-phase interference pattern, \(\Delta \text{V}_{\text{in-phase}}\) [Fig. 2(b)], shows a spot of about 200 μm diameter with
obtained under the shown in Supplement 1, Figs. S2a when the tip-aperture distance was reduced below 10 μm. This allowed us to achieve localization of the THz intensity needles, was detected in proximity of the center of the scan. The THz field localization, created by guiding THz waves along the spatial resolution of the aperture probe defined as the FWHM area, in analogy to the case of Fig. 2(d); however, it shows a broader maximum with respect to Δυ1. This apparent discrepancy is inherent to the methodology that extracts the electric field distribution, instead of the electromagnetic intensity distribution. We note that the aperture size limits the spatial resolution of these images to ~17 μm. Additionally, the coherent image shows two minima above and below the central peak. These minima do not appear in the incoherent image [Fig. 2(d)]. From this measurement it is possible to retrieve the phase image of an object placed in front of the aperture (Supplement 1, Fig. S4d). Furthermore, the amplitude of the detected signal is approximately four times higher compared to the signal Δυ1. We highlight the difference in Fig. 2(f), where line scans along the vertical axis are shown for Δυ1 and Δυc.

In order to interpret the coherent image, we refer to Eq. (3), which shows that the coherent signal Δυc is proportional to the electric field amplitude √I1 ∝ E1, and depends on the relative phase difference as cos(δφ). The image in Fig. 2(d), on the other hand, provides only the time-averaged intensity of the field. The field pattern in Fig. 2(e) represents the launching of surface plasmon waves, which travel within the image plane away from the needle tips. This leads to the variation of the coherent signal along the y-axis [37]. The distance between the central maximum (the launching point) and the minima is approximately 50 μm corresponding to λQCL/2. In the intensity image, on the other hand, we expect to see a monotonic decay of intensity away from the central point; however, the noise level was too high to detect it [Fig. 2(e)]. It must be noted that the signal Δυc = Δυin-phase − Δυout-of-phase removes the incoherent component of the detected signal. The coherent image thus provides additional phase information.

In addition to proving the phase information, the coherent detection improves the sensitivity, thus allowing us to achieve a wider dynamic range. In order to evaluate the sensitivity limit, here we introduce a framework for describing the detector responsivity. As it follows from Eq. (2), the measured intensity Iout depends on the relative phase δφ. We therefore introduce effective responsivity R∗, defined as

![Fig. 2](https://example.com/image2.png)

(a) Optical image of two needles employed for focusing the THz beam to a sub-wavelength spot. The needles are placed in front of the NW nanodetector probe. (b), (c) Spatial distribution of the near-field probe photovoltage Δυtot, for the in-phase and out-of-phase conditions without the needles. (d) Spatial distribution of Δυ1, detected under the front side only (I1) illumination of the near-field probe, and (e) spatial distribution of the coherent photovoltage Δυc = Δυin-phase − Δυout-of-phase when the two needles focus the incident beam to a sub-wavelength spot. (f) Vertical line scans of Δυ1 and Δυc extracted from maps (d) (red line) and (e) (blue line), respectively.
For example, the blue curve in Fig. 3(a) illustrates the case the ratio $R_1 I_1 + R_2 I_2 + 2\gamma \sqrt{R_1 I_1 R_2 I_2} \cos(\delta \phi)$,
\[R^* = \frac{R_1 I_1 + R_2 I_2 + 2\gamma \sqrt{R_1 I_1 R_2 I_2} \cos(\delta \phi)}{I_1 + I_2}, \] (4)

and the phase-dependent component R_c,
\[R_c = \frac{4\gamma \sqrt{R_1 I_1 R_2 I_2}}{I_1 + I_2}, \] (5)

which will be referred to as the coherent component of effective responsivity. To better clarify Eqs. (4) and (5), we plot in Fig. 3(a) which will be referred to as the coherent component of effective lumination of the probe on its front and back sides. R^* in general follows an ellipse function, which depends on the degree of coherence of the two beams and on the ratio of responsivities R_1 and R_2. For any combination of I_1 and I_2, the effective responsivity R^* varies with the relative phase $\delta \phi$ between the two limits defined by points of intersection of the ellipse with a vertical line $\xi = (I_2 - I_1)/(I_2 + I_1)$. This span corresponds to the coherent responsivity R_c.

In the case of the coherent beam ($\gamma = 1$) and symmetric device responsivity, $R_1 = R_2$, the ellipse is symmetric with respect to the $\xi = 0$ axis [black line in Fig. 3(a)]. At the two extrema $\xi = 1$ ($I_1 = 0$) and $\xi = -1$ ($I_2 = 0$) the effective responsivity becomes the incoherent responsivity $R' = R_2$ and $R'^* = R_1$, respectively. For $\xi = 0$, the interference between the two beams can be controlled by moving the delay stage and R^* can be continuously varied between zero and $2R_2$.

If the device architecture is asymmetric ($R_1 \neq R_2$), as in the case of the near-field probe, the ellipse is tilted in the $\xi - R^*$ plane. For example, the blue curve in Fig. 3(a) illustrates the case $R_1 = R_2/2$. For partially coherent beams, when $\gamma < 1$, the ellipse shrinks along the vertical axis [red curve in Fig. 3(a)]. In the extreme case of $\gamma = 0$, the ellipse collapses into a line connecting the two points ($\xi = -1, R^* = R_1$) and ($\xi = 1, R^* = R_2$) [green line in Fig. 3(a)]. Under this condition, the detected signal is independent of the delay stage position, because the phases of the front and reference waves are uncorrelated, and therefore the detector signal is proportional to the sum $I_1 + I_2$.

We measured the degree of coherence of the front and reference beams by adjusting the optical intensity I_1 with THz attenuation filters while keeping the reference intensity I_2 constant [Fig. 3(a)]. In this way we varied the degree of asymmetry of the probe illumination, ξ. In particular, we measured the effective responsivity of the probe, R^*, by changing I_1 between 12.9 μW \cdot cm$^{-2}$ and 922 μW \cdot cm$^{-2}$ ($P_{\text{tot}(1)}$ between 7.6 nW and 543 nW), while I_2 was kept constant at 989 μW \cdot cm$^{-2}$ ($P_{\text{tot}(2)} = 816$ nW). A constellation of the measured points follows an elliptical shape [Fig. 3(b)] with eccentricity $\gamma = 0.63$, corresponding to the degree of coherence of the two beams.

Using this framework, we can quantitatively evaluate the advantage of coherent detection by means of estimating the effective responsivity of the near-field probe when I_1 is only a small fraction of I_2. This situation well represents a practical near-field imaging system in which the field coupled through the aperture can be weak. We can then define the coherent responsivity (R_c) of the probe to the intensity coupled into the aperture I_1 as
\[R_{c1} = \frac{\Delta u_c}{I_1} = R_c \frac{I_1 + I_2}{I_1} = 4\gamma \sqrt{\frac{R_1 R_2 I_2}{I_1}} \] (6)

This quantity depends on the ratio I_1/I_2, and it decreases when I_1 is raised for a fixed value of I_2. The measured values of R_1 and R_c are plotted in Fig. 3(d) as functions of the ratio I_1/I_2, and clearly show the advantage of the coherent detection scheme with respect to the standard front illumination approach. Indeed, under the front illumination only, the minimum detected intensity is $I_1 = 40$ μW \cdot cm$^{-2}$. This sets an upper limit for the minimum detectable power (MDP) of 25.3 nW.

Fig. 3. (a) Graphic representation of the responsivity ratio R^*/R_2 as a function of ξ for different experimental configurations. (b) Measured responsivity R^* as a function of the degree of asymmetry of the illumination ξ. (c) Schematics of the interferometric optical setup with an additional attenuator (A) positioned along the optical path of the front illumination beam (I_1). (d) Coherent responsivity (R_c, blue circles) and non-coherent responsivity (R_I, red triangles) plotted as a function of the intensity ratio I_1/I_2.

\[
R^* = \frac{R_1 I_1 + R_2 I_2 + 2\gamma \sqrt{R_1 I_1 R_2 I_2} \cos(\delta \phi)}{I_1 + I_2},
\]
\[
R_c = \frac{4\gamma \sqrt{R_1 I_1 R_2 I_2}}{I_1 + I_2}.
\]
At $I_g = 12.9 \mu W \cdot cm^{-2}$, no THz signal is detected in the standard detection scheme; i.e., the THz power is below the MDP. On the other hand, if a coherent detection scheme is employed, a power law behavior for R_c is observed: $R_c \propto \sqrt{I_g}$. The minimum detected intensity was reduced to $12.9 \mu W \cdot cm^{-2}$, corresponding to a coherent photovoltage ΔV, of $26 \, nV$. This gives an upper limit for the MDP of $7.6 \, nW$, clearly showing that the coherent detection scheme effectively lowers the MDP level and strongly improves the sensitivity of near-field measurements.

4. CONCLUSION
In conclusion, we demonstrated interferometric THz near-field imaging with sub-wavelength spatial resolution using a THz a-SNOM probe with a monolithically embedded coherent detector. The detector is based on an InAs NW, and it is integrated into an imaging with sub-wavelength spatial resolution using a THz technique. Our results pave the way to the development of novel THz microscopes for large-area sub-wavelength resolution phase- and amplitude-sensitive imaging. In combination with QCL sources operating in the 1.5–5.0 THz range, this imaging technique can aid in the development of novel THz components (mirrors, filters, metamaterials, metalenses, and sub-wavelength resonators) and open new research avenues in the studies of fundamental light–matter interaction phenomena in many interdisciplinary fields crossing optics, photonics, chemistry, and biology.

Funding. H2020 European Research Council (ERC) (SPRINT); Royal Society; Engineering and Physical Sciences Research Council (EPSRC).

Acknowledgment. M. S. V. acknowledges financial support from the second half of the 2016 Balzan Prize for Applied Photonics delivered to Federico Capasso. The authors acknowledge D. Ercolani and L. Sorba for the growth of InAs nanowires.

'These authors contributed equally to this work.

See Supplement 1 for supporting content.

REFERENCES

