Bibliography

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., et al. (2011). The community noah land surface

List of Figures

1.1 Forecast error growth and predictability (Source: COMET UCAR Program). ... 8
1.2 Meteorological typical spatial and temporal scales (Source: COMET UCAR Program). 10
1.3 Range of space and time of hydrological processes from Dingman (2015) . 12
1.4 Governing equations of numerical weather modelling (Source: COMET UCAR Program). A more detailed of these equations is reported in appendix A.1 ... 13
1.5 Schematic of the typical structure of an atmospheric modelling system. Adapted from Warner (2010) 15
1.6 Principal storages and pathways of water in the hydrological cycle from Dingman (2015) 20
2.1 WRF-Hydro modelling structure from Gochis et al. (2013) ... 33
3.1 Large scale circulation of geopotential (a panels), temperature (b panels) and specific humidity (c panels) at 500 hPa on July 28th at 00 UTC as simulated by WRF J24 (a1, b1, c1), J26 (a2, b2, c2), J28 (a3, b3, c3), J28R (a4, b4, c4) runs and by ERA-Interim reanalysis (a5, b5, c5). 45
3.2 Large scale circulation of geopotential (a panels), temperature (b panels) and specific humidity (c panels) at 500 hPa on July 29th at 00 UTC, as simulated by WRF J24 (a1, b1, c1), J26 (a2, b2, c2), J28 (a3, b3, c3), J28R (a4, b4, c4) runs and by ERA-Interim reanalysis (a5, b5, c5). 46
3.3 The two nested domains used for the simulations: external domain d01 (red box) resolved at 14 km resolution and inner domain d02 (white box) resolved at 3.5 km. The color levels report the orography of the region, provided by the ETOPO1 dataset. 47
3.4 WRF Quantitative Precipitation Forecasts and TRMM daily rainfall. From left to right: Exp-WSM6 (a1, b1), KF-WSM6 (a2, b2), Exp-Thompson (a3, b3), KF-Thompson (a4, b4), TRMM (a5, b5) and raingauge observations (a6, b6). All fields have been aggregated at 0.25° resolution in the study area. The top row refers to July 28th 2010 (a) and the bottom row refers to July 29th (b). The blue lines represent CloudSat tracks and the white contour represents the object identified by MODE analysis. 53
3.5 Comparison between probabilities of exceedence (1-CDF) for daily rainfall from WRF simulations and TRMM estimates, for July 28th (left panel) and July 29th (right panel). Spatial resolution is 0.25° and the results refer to the whole study area.

3.6 First row: 24-hr rainfall cumulates on July 28th given by: J24 (a1), J26 (a2), J28 (a3), J28S (a4), J28R (a5), TRMM (a6) and raingauge stations (a7). Second row: 24-hr rainfall accumulation on July 29th given by: J24 (b1), J26 (b2), J28 (b3), J28S (b4), J28R (b5), TRMM (b6) and raingauge stations (b7). All rainfall fields have been aggregated at 0.25° horizontal resolution. The blue lines represent CloudSat tracks and the white contour represents the object identified by MODE analysis.

3.7 Comparison between probabilities of exceedence (1-CDF) obtained from WRF using different initialization days and those derived from TRMM estimates. Left panel: July 28th; right panel: July 29th. The spatial resolution is 0.25° and the results refer to the whole study area.

3.8 Surface temperature at the time of initialization (28th at 00 UTC) and on 29th at 00 UTC for the J28 and J28R runs. Upper row: Temperature field at 2m in the J28 run on July 28th at 00 UTC (a1); the same for the J28R run (a2); pixel-by-pixel difference between these two temperature fields (a3). Bottom row: Temperature field at 2m for the J28 run on July 29th at 00 UTC (b1); the same for the J28R run (b2); pixel-by-pixel difference between these two temperature fields (b3). Temperature fields are plotted at 0.75° horizontal resolution.

3.9 Moisture transport field for the J28 run on July 28th at 00 UTC (a1); the same for the J28R run (a2); moisture transport for the J28 run on July 29th at 00 UTC (a3); the same for the J28R run (a4). Moisture transport fields are plotted at the resolution of WRF simulations (3.5 km). The colors indicate the intensity and the vectors represent the directions of the moist transport.

3.10 Vertical structure of the atmosphere on July 28th at 21 UTC. From the upper to the lower panel: CloudSat observation (Granule 22608) (a) and DS3 CloudSat simulations for Exp-WSM6 initialized on J24 (b), Exp-WSM6 initialized on J26 (c), Exp-WSM6 initialized on J26 with different microphysical assumptions (d), Exp-WSM6 at 23 UTC initialized on J26 (e), KF-WSM6 initialized on J26 (f), KF-Thompson initialized on J26 (g), KF-Thompson initialized on J26 with different microphysical assumptions (h), Exp-Thompson initialized on J26 (i), Exp-WSM6 initialized on J28 (j), Exp-WSM6 at 23 UTC initialized on J28 (k).

4.1 Simple schematization of the experiment. Adapted from figure from Noah-MP website (http://www.jsg.utexas.edu/noah-mp/).

4.2 The two nested domains used for the simulations: external domain d01 resolved at 12 km resolution and inner domain d02 resolved at 4 km.
4.3 Meteorological stations over the d02 domain. In blue the meteorological stations inside the basin. ... 77

4.4 Soil moisture stations inside the basin. .. 78

4.5 Flux stations inside the domain. .. 79

4.6 Accumulated monthly rainfall map analysis for the month of August. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. ... 83

4.7 Accumulated monthly rainfall map analysis for the month of December. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. ... 83

4.8 Cumulative Distribution functions (CDFs) for the different model configurations: Explicit Thompson (blu line), Explicit WSM6 (green line) and raingauge observations (red line). CDFs from (a) to (n) refer to the different months of the year 2012 (from January (a) to December 2012 (n) from left to right and from the top to the bottom). ... 85

4.9 Average precipitation diurnal cycle over the month of August. 86

4.10 Accumulated monthly rainfall map analysis for the month of February. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. ... 87

4.11 Average precipitation diurnal cycle over the month of February. 87

4.12 Average hourly rainfall over the d02 domain for the month of February 2012: comparison between WRF model simulations and interpolated raingauge observations. ... 88

4.13 Daily rainfall scatterplots for the year 2012. Panel (a) represent the Explicit Thompson configuration and panel (b) shows explicit WSM6 configuration. ... 89

4.14 Comparison between the calibration run with REFKDT=0.4 (black line) and the streamflow observations (red line) at the Monte Molino river section. 96

4.15 Comparison between the calibration run with REFKDT=0.4 and RET-DEPFRAC=0 (blu line) and the other run with REFKDT=0.4 and RET-DEPFRAC=500 (black line) at the Monte Molino river section. 97

4.16 Comparison between the calibration run with SATKDT=default + 0.9 x 10^{-6} and REFKDT=0.3 (black line) and the streamflow observations (red line) at the Monte Molino river section.(m^3/sec) 99

4.17 Flow duration curve for the best calibration runs, compared with the observations. ... 99
4.18 Daily latent and sensible heat partitioning between WRF-Hydro best calibration run (black) and observations (blue) at the ITCA1 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient.

4.19 Net radiation scatterplot between WRF-Hydro best calibration run and observations at the ITCA1 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient.

4.20 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m (panel (b)) soil depths and rain and temperature variations (panel (c)) for the year 2012 at Petrelle station site.

4.21 Comparison between the best calibration run with SATKDT=default + 0.9 x 10-6 and REFKDT=0.3 (blue line) and the streamflow observations (red line) at the Monte Molino river section for the period 2012 (calibration)- 2013 (validation) (m3/sec)

4.22 Hourly soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m (panel (b)) soil depths and rain and temperature variations (panel (c)) for the year 2013 at Petrelle station site.

4.23 Averaged daily rainfall comparison over the Tiber river basin for year 2012.

4.24 Averaged daily rainfall comparison over the Tiber river basin.

4.25 pixel-by-pixel daily rainfall RMSE between WRF/WRF-Hydro and WRF over the Tiber river basin.

4.26 Daily rainfall map comparison for the 14 September 2012 among WRF/WRF-Hydro (panel (a)), WRF (panel (b) and the gauge observations (panel (c)).

4.27 Annual accumulated rainfall differences map between WRF/WRF-Hydro and WRF for the year 2012 over the d02 domain.

4.28 Soil moisture comparison at the Petrelle station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red).

4.29 Soil moisture comparison at the Petrelle station site for summer period (from July 15th to August 15th) at SM2. Panel (a) shows the soil moisture content for the different simulations and as observed. Panel (b) shows the associated daily rainfall for the different simulations and raingauge observations.

4.30 Soil moisture comparison at the Petrelle station site for fall period (from October 10th to December 1st) at SM2. Panel (a) shows the soil moisture content for the different simulations and as observed. Panel (b) shows the associated daily rainfall for the different simulations and raingauge observations.

4.31 Average evapotranspiration comparison over the Tiber river basin between WRF/WRF-Hydro (blue) and WRF (black) configurations.

4.32 Average accumulated evapotranspiration comparison over the Tiber river basin between WRF/WRF-Hydro (blue) and WRF (black) configurations (panel (a)) and daily differences (panel (b)).
4.33 Different contributions in terms of water balance for the year 2012. WRF and WRF Hydro comparisons in terms of cumulated runoff (panel (a)), cumulated daily evapotranspiration (panel (b)), cumulated daily rainfall (panel (c)) and average hourly soil moisture inside the basin (panel (d)).

4.34 Hydrograph comparison among WRF, WRF/WRF-Hydro and the observations at the Monte Molino closing section, for the year 2012.

A.1 Governing equations of numerical weather modelling (Source: COMET UCAR Program).

A.2 Equation (1a): Wind forecast equation, West-to-East component. Equation (1a) of Figure A.1 (Source: COMET UCAR Program).

A.3 Equation (1b): Wind forecast equation, South-to-North component. Equation (1b) of Figure A.1 (Source: COMET UCAR Program).

A.4 Continuity equation. Equation (2) of Figure A.1 (Source: COMET UCAR Program).

A.5 Temperature forecast equation. Equation (3) of Figure A.1 (Source: COMET UCAR Program).

A.6 Moisture forecast Equation. Equation (4) of Figure A.1 (Source: COMET UCAR Program).

A.7 Hydrostatic or vertical momentum equation. Equation (5) of Figure A.1 (Source: COMET UCAR Program).

B.1 Accumulated monthly rainfall map analysis for the month of January. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations.

B.2 Accumulated monthly rainfall map analysis for the month of February. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations.

B.3 Accumulated monthly rainfall map analysis for the month of March. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations.

B.4 Accumulated monthly rainfall map analysis for the month of April. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations.
B.5 Accumulated monthly rainfall map analysis for the month of May. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. 144

B.6 Accumulated monthly rainfall map analysis for the month of June. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. 145

B.7 Accumulated monthly rainfall map analysis for the month of July. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. 146

B.8 Accumulated monthly rainfall map analysis for the month of August. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. 147

B.9 Accumulated monthly rainfall map analysis for the month of September. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. 148

B.10 Accumulated monthly rainfall map analysis for the month of October. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. 149

B.11 Accumulated monthly rainfall map analysis for the month of November. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. 150

B.12 Accumulated monthly rainfall map analysis for the month of December. Total accumulated rainfall values over the month ((a)-(c)), accumulated rainfall over a first sample of 15 random days ((d)-(f)), accumulated rainfall over a second sample of 15 random days (for (g)-(i) for (from left to right) Exp-Thom, Exp-WSM6 and observations. 151

B.13 Average precipitation diurnal cycle over the month of January. 152

B.14 Average precipitation diurnal cycle over the month of February. 153

B.15 Average precipitation diurnal cycle over the month of March. 153
B.16 Average precipitation diurnal cycle over the month of April. 154
B.17 Average precipitation diurnal cycle over the month of May. 154
B.18 Average precipitation diurnal cycle over the month of June. 155
B.19 Average precipitation diurnal cycle over the month of July. 155
B.20 Average precipitation diurnal cycle over the month of August. 156
B.21 Average precipitation diurnal cycle over the month of September. .. 156
B.22 Average precipitation diurnal cycle over the month of October. 157
B.23 Average precipitation diurnal cycle over the month of November. ... 157
B.24 Average precipitation diurnal cycle over the month of December. ... 158

C.1 Daily latent and sensible heat partitioning between WRF-Hydro best calibration run (black) and observations (blue) at the ITCA1 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 159
C.2 Daily latent and sensible heat partitioning between WRF-Hydro best calibration run (black) and observations (blue) at the ITCA2 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 160
C.3 Daily latent and sensible heat partitioning between WRF-Hydro best calibration run (black) and observations (blue) at the ITCA3 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 160
C.4 Daily latent and sensible heat partitioning between WRF-Hydro best calibration run (black) and observations (blue) at the ITRO4 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 161
C.5 Daily latent and sensible heat partitioning between WRF-Hydro best calibration run (black) and observations (blue) at the ITCOL station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 161
C.6 Net radiation scatterplot between WRF-Hydro best calibration run and observations at the ITCA1 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 162
C.7 Net radiation scatterplot between WRF-Hydro best calibration run and observations at the ITCA2 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 163
C.8 Net radiation scatterplot between WRF-Hydro best calibration run and observations at the ITCA3 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 163
C.9 Net radiation scatterplot between WRF-Hydro best calibration run and observations at the ITRO4 station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 164
C.10 Net radiation scatterplot between WRF-Hydro best calibration run and observations at the ITCOL station site, with the associated statistics in terms of RMSE, R^2 and regression coefficient. 164
C.11 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2012 at Torre dell’Olmo station site. 165
C.12 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2012 at Solomeo station site. 165
C.13 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2012 at San Benedetto station site. 166
C.14 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2012 at Petrelle station site. 166
C.15 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2012 at Monterchi station site. 167
C.16 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2012 at Foligno station site. 168
C.17 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2013 at Ficulle station site. 168
C.18 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2013 at Cerbara station site. 169
C.19 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2013 at PgIng1 station site. 169
C.20 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2013 at PgIng2 station site. 170
C.21 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2013 at Torre dell’Olmo station site. 170
C.22 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2013 at San Benedetto station site. 171
C.23 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m
(panel (b)) soil depths and rain and temperature variations (panel (c)) for
the year 2013 at Pieve Santo Stefano station site. 171
C.25 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m (panel (b)) soil depths and rain and temperature variations (panel (c)) for the year 2013 at Petrelle station site. .. 172

C.26 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m (panel (b)) soil depths and rain and temperature variations (panel (c)) for the year 2013 at Monterchi station site. .. 172

C.27 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m (panel (b)) soil depths and rain and temperature variations (panel (c)) for the year 2013 at Ficulle station site. .. 173

C.28 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m (panel (b)) soil depths and rain and temperature variations (panel (c)) for the year 2013 at Cerbara station site. .. 173

C.29 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m (panel (b)) soil depths and rain and temperature variations (panel (c)) for the year 2013 at PgIng1 station site. .. 174

C.30 Soil moisture dynamic for level SM1=0.1 m (panel (a)) and SM2=0.3 m (panel (b)) soil depths and rain and temperature variations (panel (c)) for the year 2013 at PgIng2 station site. .. 174

D.1 Daily rainfall map comparison for the 24 July 2012 among WRF/WRF-Hydro (panel (a)), WRF (panel (b) and the gauge observations (panel (c)). .. 175

D.2 Daily rainfall map comparison for the 3 September 2012 among WRF/WRF-Hydro (panel (a)), WRF (panel (b) and the gauge observations (panel (c)). 175

D.3 Daily rainfall map comparison for the 14 September 2012 among WRF/WRF-Hydro (panel (a)), WRF (panel (b) and the gauge observations (panel (c)). ... 176

D.4 Daily rainfall map comparison for the 13 October 2012 among WRF/WRF-Hydro (panel (a)), WRF (panel (b) and the gauge observations (panel (c)). ... 176

D.5 Daily rainfall map comparison for the 18 November 2012 among WRF/WRF-Hydro (panel (a)), WRF (panel (b) and the gauge observations (panel (c)). ... 176

D.6 Soil moisture comparison at the Olmo station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). ... 177

D.7 Soil moisture comparison at the Solomeo station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). ... 178

D.8 Soil moisture comparison at the San Benedetto station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). ... 178

D.9 Soil moisture comparison at the Pieve Santo Stefano station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). ... 179
D.10 Soil moisture comparison at the Petrelle station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). . . 179
D.11 Soil moisture comparison at the Monterchi station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). . . 180
D.12 Soil moisture comparison at the Foligno station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). . . 180
D.13 Soil moisture comparison at the Ficulle station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). . . 181
D.14 Soil moisture comparison at the Cerbara station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). . . 181
D.15 Soil moisture comparison at the PgIng1 station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). . . 182
D.16 Soil moisture comparison at the PgIng2 station site for the different simulations for the SM1 and SM2 soil layers: WRF-Hydro calibration run (blue), WRF/WRF-Hydro (yellow), WRF (violet) and observed (red). . . 182
List of Tables

2.1 Summary of the main microphysics options in the WRF model 25
2.2 Summary of the main cumulus parameterization schemes options in the WRF model. .. 26
2.3 Summary of the main PBL schemes in the WRF model 27
2.4 Summary of the main radiation schemes (longwave and shortwave) in the WRF model. .. 28
2.5 Summary of the main LSM schemes in the WRF model 29

3.1 Experiment configurations. .. 52
3.2 Statistical score analysis for the different configurations for July 28th (upper panel) and for July 29th (lower panel). The first part of the table shows the values of MODE verification analysis of centroid distance, area ratio and interest. The MODE evaluation refers to the highest intensity object identified in each run that matches with the corresponding TRMM object. The matched objects are shown in Fig.3.4. In the second part the different percentiles (median, 60th, 90th and 95th) are shown. In the third part are reported MB and RMSE. The fourth part of the table shows MB and RMSE calculated between raingauge station measures and associated nearest neighbour WRF grid point. The first three parts of the table use TRMM as reference dataset. The fourth part of the table shows MB and RMSE calculated between raingauge station measures and associated nearest neighbour WRF grid point. 54
3.3 Summary of all the different runs performed in the second part of the experiment. .. 57

218
3.4 Statistical score analysis for the different initializations, for July 28th (upper panel) and for July 29th (lower panel). The first part of the table shows the values of MODE verification analysis of centroid distance, area ratio and and interest. The MODE evaluation refers to the highest intensity object identified in each run that matches with the corresponding TRMM object. The matched objects are shown in Fig.3.6. In the second part the different percentiles (median, 60th, 90th and 95th) are shown. In the third part are reported MB and RMSE. The fourth part of the table shows MB and RMSE calculated between raingauge station measures and associated nearest neighbour WRF grid point. The first three parts of the table use TRMM as reference dataset. The fourth part of the table shows MB and RMSE calculated between raingauge station measures and associated nearest neighbour WRF grid point.

4.1 Experiment configurations.
4.2 Statistical score analysis at basin scale with total accumulated rainfall over the month (TotRainfall), monthly accumulated differences with the observed fields (DiffObs) and RMSE for every simulation and observations.
4.3 Summary statistics for the different calibration runs analyzed.
4.4 Quantitative analysis of flux comparison of sensible and latent heat partitioning and net radiation.
4.5 Mean, variance and correlation coefficients for soil moisture comparison between the best calibration run (WRF-Hydro) and observations (OBS) at all the stations sites inside the basin for the year 2012.
4.7 Mean, variance and correlation coefficients for soil moisture comparison between the best calibration run (WRF-Hydro) and observations (OBS) at all the stations sites inside the basin for the validation year 2013 at hourly scale.
4.8 Summary of the days with highest differences between WRF/WRF-Hydro and WRF from the daily differences analysis and RMSE evaluation.
4.9 Monthly rainfall differences (mm) averaged over the Tiber river basin between WRF/WRF-Hydro and observations (first column), WRF and observations (second columns), WRF/WRF-Hydro and WRF (third column).
4.10 Mean distribution values of modelled soil moisture of WRF/WRF-Hydro and WRF with the observations for the two soil moisture depths SM1 and SM2.
4.11 Variance of modelled soil moisture distributions of WRF/WRF-Hydro, WRF and observations for the two soil moisture depths SM1 and SM2.
4.12 Correlation coefficients of modelled soil moisture of WRF/WRF-Hydro and WRF with the observations for the two soil moisture depth SM1 and SM2.
4.13 Streamflow evaluation for the WRF/WRF-Hydro and WRF in terms of maximum peak (m3/s), time of the peak, RMSE (m3/s), RHO, Nash-Sutcliffe ... 127
Acknowledgements

This Ph.D. thesis would not have been successful without the help and collaboration of a lot of people from all the world that professionally and morally helped and supported me during this path.

I would like to thank my supervisors Antonio Parodi and Jost von Hardenberg for their important tutorship in these three years, for all their efforts, for their valuable teachings and for all the opportunities they gave me.

I would like to thank very much Dr. Antonello Provenzale, for his scientific contributions, good advices and for having always believed in me.

I'm really grateful to Luca Molini and Fabio Delogu for their fundamental scientific and moral help. I have discovered not only two good colleagues but also two very good friends.

I sincerely thank Elisa Palazzi, for always being a person I can always count on and for her very good advices about work, but also about poetry, literature and life in general. I sincerely admire and thank this woman for being such a great scientist and person.

I am really grateful to David Gochis for being my host at RAL-NCAR for six months and for his fruitful collaboration and guidance that changed my professional life forever, opening new perspectives and future great opportunities. I would also like to thank all the rest of the WRF-Hydro group at RAL for their collaboration and for always trying to answer to my questions, creating very interesting discussions during scientific meetings and amazing time during happy hours. Thanks to Aubrey Dugger, Kevin Sampson, James McCreight, Arezoo RafieeiNasab, Wei Yu, David Yates, Logan Karsten.

I thank all the CNR-IRPI office for its collaboration during all my PhD, for being always open to my questions and for being a source of inspiration to this work. In particular I want to thank Tommaso Moramarco, Luca Brocca, Luca Ciabatta, Silvia Barbetta, Stefania Camici, Angelica Tarpanelli and all the other guys and girls of the office. I am also grateful to the Regione Umbria office for sharing with me their observational data and for being always nice and supportive to my research. A special thank to Marco Stelluti and Nicola Berni.

I want to thank Alfonso Senatore, Amir Givati, Ismail Yucel for their answers to my questions and for the scientific discussions.

Special thanks to my three external reviewers Tommaso Moramarco, David Gochis and Raquel Lorente-Plazas for having read this thesis carefully, and for their useful suggestions. Many thanks also to my Ph.D. Coordinator, Prof.ssa Simona Sacone, for
always being helpful, polite and cooperative in every step of my Ph.D.

I spent part of my Ph.D. period in different cities such as Savona, Torino and Boulder.

I want to thank all the colleagues at CIMA for sharing four years with me.

I am grateful to all my friends at ISAC-CNR and Turin. We spent a great time together that I will never forget. I felt really appreciated and free to be totally myself. We had a great time together and they helped me with moral (and chocolate) support every time. I think I have found some friends I will never forget. Now everybody is taking different roads, but I am sure that distance and time will never break our close relationships and friendship. Thank you very much to Donatella, Silvia, Elisa, Luca, Paolo, Alex, Valentina, Marco and Riccardo.

I sincerely thank all the friends I have met in Boulder and made my stay there such a positive experience. Special thanks to Ben, Camille, Marta, Alvaro, Pablo, Raquel, Lisa, Nans, Arezoo, Marie, Mike, Patrick, Domingo, Mathias, Scott, Rod, Eric, Chris, Ryan, Alessandro, the two Andreas, Marijan, Jiah and all the special and brave girls of my English class. Thanks to all the guys who shared with me the ENSO concerts, the happy hours, the crazy bike trips and visited USA with me. Thanks to my family in Colorado: Marialaura and Francesco. I will be too sad for not being at your marriage, but we will soon be together.

During the three years of the PhD I participated in numerous conferences, courses and summer school during which I met many researchers from all over the world, that dedicated their life to an idea, following their personal inspiration with passion, strength and dignity. Some of them has now became friends for life. Thank you to all the PhD days fellows and to all the Valsavarance summer school friends. Thank you to Maria, the "fenicottero rosa"’s team, to Andrea, Matteo, Alessio, Caterina, Alessandro, Leò, Ned, Azusa and many others.

Thank you to all my friend from Perugia and from Puglia, that shared with me important moments of my life and give me happiness to face all the difficult moments.

A very big thank to my parents and all my family (my grandparents, uncles and aunts, "little cousins"). Their love and support is unconditioned, even if I know their are going to suffer for my future choices. I will try to never let you feel alone even if I will be far. Thank you to my little dog, that is old enough to deserve a big thank you.

Francesca