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Abstract

We analyze the learning properties of the stochastic gradient method when multiple
passes over the data and mini-batches are allowed. In particular, we consider
the square loss and show that for a universal step-size choice, the number of
passes acts as a regularization parameter, and optimal finite sample bounds can be
achieved by early-stopping. Moreover, we show that larger step-sizes are allowed
when considering mini-batches. Our analysis is based on a unifying approach,
encompassing both batch and stochastic gradient methods as special cases.

1 Introduction

Modern machine learning applications require computational approaches that are at the same time
statistically accurate and numerically efficient [2]. This has motivated a recent interest in stochastic
gradient methods (SGM), since on the one hand they enjoy good practical performances, especially
in large scale scenarios, and on the other hand they are amenable to theoretical studies. In particular,
unlike other learning approaches, such as empirical risk minimization or Tikhonov regularization,
theoretical results on SGM naturally integrate statistical and computational aspects.
Most generalization studies on SGM consider the case where only one pass over the data is allowed
and the step-size is appropriately chosen, [5, 14, 29, 26, 9, 16] (possibly considering averaging [18]).
In particular, recent works show how the step-size can be seen to play the role of a regularization
parameter whose choice controls the bias and variance properties of the obtained solution [29, 26, 9].
These latter works show that balancing these contributions, it is possible to derive a step-size choice
leading to optimal learning bounds. Such a choice typically depends on some unknown properties of
the data generating distributions and in practice can be chosen by cross-validation.
While processing each data point only once is natural in streaming/online scenarios, in practice SGM
is often used as a tool for processing large data-sets and multiple passes over the data are typically
considered. In this case, the number of passes over the data, as well as the step-size, need then to
be determined. While the role of multiple passes is well understood if the goal is empirical risk
minimization [3], its effect with respect to generalization is less clear and a few recent works have
recently started to tackle this question. In particular, results in this direction have been derived in [10]
and [11]. The former work considers a general stochastic optimization setting and studies stability
properties of SGM allowing to derive convergence results as well as finite sample bounds. The latter
work, restricted to supervised learning, further develops these results to compare the respective roles
of step-size and number of passes, and show how different parameter settings can lead to optimal
error bounds. In particular, it shows that there are two extreme cases: one between the step-size or the
number of passes is fixed a priori, while the other one acts as a regularization parameter and needs
to be chosen adaptively. The main shortcoming of these latter results is that they are in the worst
case, in the sense that they do not consider the possible effect of capacity assumptions [30, 4] shown
to lead to faster rates for other learning approaches such as Tikhonov regularization. Further, these
results do not consider the possible effect of mini-batches, rather than a single point in each gradient
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step [21, 8, 24, 15]. This latter strategy is often considered especially for parallel implementation of
SGM.
The study in this paper, fills in these gaps in the case where the loss function is the least squares loss.
We consider a variant of SGM for least squares, where gradients are sampled uniformly at random
and mini-batches are allowed. The number of passes, the step-size and the mini-batch size are then
parameters to be determined. Our main results highlight the respective roles of these parameters and
show how can they be chosen so that the corresponding solutions achieve optimal learning errors. In
particular, we show for the first time that multi-pass SGM with early stopping and a universal step-size
choice can achieve optimal learning rates, matching those of ridge regression [23, 4]. Further, our
analysis shows how the mini-batch size and the step-size choice are tightly related. Indeed, larger
mini-batch sizes allow to consider larger step-sizes while keeping the optimal learning bounds. This
result could give an insight on how to exploit mini-batches for parallel computations while preserving
optimal statistical accuracy. Finally we note that a recent work [19] is tightly related to the analysis
in the paper. The generalization properties of a multi-pass incremental gradient are analyzed in
[19], for a cyclic, rather than a stochastic, choice of the gradients and with no mini-batches. The
analysis in this latter case appears to be harder and results in [19] give good learning bounds only in
restricted setting and considering iterates rather than the excess risk. Compared to [19] our results
show how stochasticity can be exploited to get faster capacity dependent rates and analyze the role of
mini-batches. The basic idea of our proof is to approximate the SGM learning sequence in terms of
the batch GM sequence, see Subsection 3.4 for further details. This thus allows one to study batch
and stochastic gradient methods simultaneously, and may be also useful for analysing other learning
algorithms.
The rest of this paper is organized as follows. Section 2 introduces the learning setting and the SGM
algorithm. Main results with discussions and proof sketches are presented in Section 3. Finally,
simple numerical simulations are given in Section 4 to complement our theoretical results.
Notation For any a, b ∈ R, a ∨ b denotes the maximum of a and b. N is the set of all positive
integers. For any T ∈ N, [T ] denotes the set {1, · · · , T}. For any two positive sequences {at}t∈[T ]

and {bt}t∈[T ], the notation at . bt for all t ∈ [T ] means that there exists a positive constant C ≥ 0
such that C is independent of t and that at ≤ Cbt for all t ∈ [T ].

2 Learning with SGM

We begin by introducing the learning setting we consider, and then describe the SGM learning
algorithm. Following [19], the formulation we consider is close to the setting of functional regression,
and covers the reproducing kernel Hilbert space (RKHS) setting as a special case. In particular, it
reduces to standard linear regression for finite dimensions.

2.1 Learning Problems

Let H be a separable Hilbert space, with inner product and induced norm denoted by 〈·, ·〉H and
‖ · ‖H , respectively. Let the input space X ⊆ H and the output space Y ⊆ R. Let ρ be an unknown
probability measure on Z = X × Y, ρX(·) the induced marginal measure on X , and ρ(·|x) the
conditional probability measure on Y with respect to x ∈ X and ρ.
Considering the square loss function, the problem under study is the minimization of the risk,

inf
ω∈H
E(ω), E(ω) =

∫

X×Y
(〈ω, x〉H − y)2dρ(x, y), (1)

when the measure ρ is known only through a sample z = {zi = (xi, yi)}mi=1 of size m ∈ N,
independently and identically distributed (i.i.d.) according to ρ. In the following, we measure the
quality of an approximate solution ω̂ ∈ H (an estimator) considering the excess risk, i.e.,

E(ω̂)− inf
ω∈H
E(ω). (2)

Throughout this paper, we assume that there exists a constant κ ∈ [1,∞[, such that

〈x, x′〉H ≤ κ2, ∀x, x′ ∈ X. (3)

2.2 Stochastic Gradient Method

We study the following SGM (with mini-batches, without penalization or constraints).
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Algorithm 1. Let b ∈ [m]. Given any sample z, the b-minibatch stochastic gradient method is defined
by ω1 = 0 and

ωt+1 = ωt − ηt
1

b

bt∑

i=b(t−1)+1

(〈ωt, xji〉H − yji)xji , t = 1, . . . , T, (4)

where {ηt > 0} is a step-size sequence. Here, j1, j2, · · · , jbT are independent and identically
distributed (i.i.d.) random variables from the uniform distribution on [m] 1.

Different choices for the (mini-)batch size b can lead to different algorithms. In particular, for b = 1,
the above algorithm corresponds to a simple SGM, while for b = m, it is a stochastic version of the
batch gradient descent.
The aim of this paper is to derive excess risk bounds for the above algorithm under appropriate
assumptions. Throughout this paper, we assume that {ηt}t is non-increasing, and T ∈ N with T ≥ 3.
We denote by Jt the set {jl : l = b(t− 1) + 1, · · · , bt} and by J the set {jl : l = 1, · · · , bT}.

3 Main Results with Discussions

In this section, we first state some basic assumptions. Then, we present and discuss our main results.

3.1 Assumptions

The following assumption is related to a moment hypothesis on |y|2. It is weaker than the often
considered bounded output assumption, and trivially verified in binary classification problems where
Y = {−1, 1}.

Assumption 1. There exists constants M ∈]0,∞[ and v ∈]1,∞[ such that∫

Y

y2ldρ(y|x) ≤ l!M lv, ∀l ∈ N, (5)

ρX -almost surely.

To present our next assumption, we introduce the operator L : L2(H, ρX) → L2(H, ρX), defined
by L(f) =

∫
X
〈x, ·〉Hf(x)ρX(x). Under Assumption (3), L can be proved to be positive trace class

operators, and hence Lζ with ζ ∈ R can be defined by using the spectrum theory [7].
The Hilbert space of square integral functions from H to R with respect to ρX , with induced norm
given by ‖f‖ρ =

(∫
X
|f(x)|2dρX(x)

)1/2
, is denoted by (L2(H, ρX), ‖ · ‖ρ). It is well known that

the function minimizing
∫
Z

(f(x) − y)2dρ(z) over all measurable functions f : H → R is the
regression function, which is given by

fρ(x) =

∫

Y

ydρ(y|x), x ∈ X. (6)

Define another Hilbert space Hρ = {f : X → R|∃ω ∈ H with f(x) = 〈ω, x〉H , ρX -almost surely}.
Under Assumption 3, it is easy to see that Hρ is a subspace of L2(H, ρX). Let fH be the projection
of the regression function fρ onto the closure of Hρ in L2(H, ρX). It is easy to see that the search for
a solution of Problem (1) is equivalent to the search of a linear function from Hρ to approximate fH.
From this point of view, bounds on the excess risk of a learning algorithm naturally depend on the
following assumption, which quantifies how well, the target function fH can be approximated by Hρ.
Assumption 2. There exist ζ > 0 and R > 0, such that ‖L−ζfH‖ρ ≤ R.
The above assumption is fairly standard [7, 19] in non-parametric regression. The bigger ζ is, the
more stringent the assumption is, since Lζ1(L2(H, ρX)) ⊆ Lζ2(L2(H, ρX)) when ζ1 ≥ ζ2. In
particular, for ζ = 0, we are assuming ‖fH‖ρ <∞, while for ζ = 1/2, we are requiring fH ∈ Hρ,
since [25, 19]

Hρ = L1/2(L2(H, ρX)).

Finally, the last assumption relates to the capacity of the hypothesis space.
1Note that, the random variables j1, · · · , jbT are conditionally independent given the sample z.
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Assumption 3. For some γ ∈]0, 1] and cγ > 0, L satisfies

tr(L(L+ λI)−1) ≤ cγλ−γ , for all λ > 0. (7)

The LHS of (7) is called as the effective dimension, or the degrees of freedom [30, 4]. It can be
related to covering/entropy number conditions, see [25] for further details. Assumption 3 is always
true for γ = 1 and cγ = κ2, since L is a trace class operator which implies the eigenvalues of L,
denoted as σi, satisfy tr(L) =

∑
i σi ≤ κ2. This is referred as the capacity independent setting.

Assumption 3 with γ ∈]0, 1] allows to derive better error rates. It is satisfied, e.g., if the eigenvalues
of L satisfy a polynomial decaying condition σi ∼ i−1/γ , or with γ = 0 if L is finite rank.

3.2 Main Results

We start with the following corollary, which is a simplified version of our main results stated next.
Corollary 3.1. Under Assumptions 2 and 3, let ζ ≥ 1/2 and |y| ≤ M ρX -almost surely for some
M > 0. Consider the SGM with
1) p∗ = dm 1

2ζ+γ e, b = 1, ηt ' 1
m for all t ∈ [(p∗m)], and ω̃p∗ = ωp∗m+1.

If m is large enough, with high probability2, there holds

EJ[E(ω̃p∗)]− inf
ω∈H
E . m−

2ζ
2ζ+γ .

Furthermore, the above also holds for the SGM with3

2) or p∗ = dm 1
2ζ+γ e, b =

√
m, ηt ' 1√

m
for all t ∈ [(p∗

√
m)], and ω̃p∗ = ωp∗

√
m+1.

In the above, p∗ is the number of ‘passes’ over the data, which is defined as d btme at t iterations.
The above result asserts that, at p∗ passes over the data, the simple SGM with fixed step-size achieves
optimal learning error bounds, matching those of ridge regression [4]. Furthermore, using mini-batch
allows to use a larger step-size while achieving the same optimal error bounds.
Remark 3.2 (Finite Dimensional Case). With a simple modification of our proofs, we can derive
similar results for the finite dimensional case, i.e., H = Rd, where in this case, γ = 0. In particular,
letting ζ = 1/2, under the same assumptions of Corollary 3.1, if one considers the SGM with b = 1
and ηt ' 1

m for all t ∈ m2, then with high probability, EJ[E(ωm2+1)]− infω∈H E . d/m, provided
that m & d log d.

Our main theorem of this paper is stated next, and provides error bounds for the studied algorithm.
For the sake of readability, we only consider the case ζ ≥ 1/2 in a fixed step-size setting. General
results in a more general setting (ηt = η1t

−θ with 0 ≤ θ < 1, and/or the case ζ ∈]0, 1/2]) can be
found in the appendix.
Theorem 3.3. Under Assumptions 1, 2 and 3, let ζ ≥ 1/2, δ ∈]0, 1[, ηt = ηκ−2 for all t ∈ [T ], with
η ≤ 1

8(log T+1) . If m ≥ mδ , then the following holds with probability at least 1− δ: for all t ∈ [T ],

EJ[E(ωt+1)]− inf
ω∈H
E ≤ q1(ηt)−2ζ + q2m

− 2ζ
2ζ+γ (1 +m−

1
2ζ+γ ηt)2 log2 T log2 1

δ

+q3ηb
−1(1 ∨m− 1

2ζ+γ ηt) log T.

(8)

Here, mδ, q1, q2 and q3 are positive constants depending on κ2, ‖T ‖,M, v, ζ, R, cγ , γ, and mδ also
on δ (which will be given explicitly in the proof).

There are three terms in the upper bounds of (8). The first term depends on the regularity of the
target function and it arises from bounding the bias, while the last two terms result from estimating
the sample variance and the computational variance (due to the random choices of the points),
respectively. To derive optimal rates, it is necessary to balance these three terms. Solving this
trade-off problem leads to different choices on η, T , and b, corresponding to different regularization
strategies, as shown in subsequent corollaries.
The first corollary gives generalization error bounds for SGM, with a universal step-size depending
on the number of sample points.

2Here, ‘high probability’ refers to the sample z.
3Here, we assume that

√
m is an integer.
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Corollary 3.4. Under Assumptions 1, 2 and 3, let ζ ≥ 1/2 , δ ∈]0, 1[, b = 1 and ηt ' 1
m for all

t ∈ [T ], where T ≤ m2. If m ≥ mδ, then with probability at least 1− δ, there holds

EJ[E(ωt+1)]− inf
ω∈H
E .

{(m
t

)2ζ
+m−

2ζ+2
2ζ+γ

( t
m

)2}
· log2m log2 1

δ
, ∀t ∈ [T ], (9)

and in particular,

EJ[E(ωT∗+1)]− inf
ω∈H
E . m−

2ζ
2ζ+γ log2m log2 1

δ
, (10)

where T ∗ = dm 2ζ+γ+1
2ζ+γ e. Here, mδ is exactly the same as in Theorem 3.3.

Remark 3.5. Ignoring the logarithmic term and letting t = pm, Eq. (9) becomes

EJ[E(ωpm+1)]− inf
ω∈H
E . p−2ζ +m−

2ζ+2
2ζ+γ p2.

A smaller p may lead to a larger bias, while a larger p may lead to a larger sample error. From this
point of view, p has a regularization effect.

The second corollary provides error bounds for SGM with a fixed mini-batch size and a fixed step-size
(which depend on the number of sample points).
Corollary 3.6. Under Assumptions 1, 2 and 3, let ζ ≥ 1/2, δ ∈]0, 1[, b = d√me and ηt ' 1√

m
for

all t ∈ [T ], where T ≤ m2. If m ≥ mδ, then with probability at least 1− δ, there holds

EJ[E(ωt+1)]− inf
ω∈H
E .

{(√m
t

)2ζ
+m−

2ζ+2
2ζ+γ

( t√
m

)2}
log2m log2 1

δ
, ∀t ∈ [T ], (11)

and particularly,

EJ[E(ωT∗+1)]− inf
ω∈H
E . m−

2ζ
2ζ+γ log2m log2 1

δ
, (12)

where T ∗ = dm 1
2ζ+γ+

1
2 e.

The above two corollaries follow from Theorem 3.3 with the simple observation that the dominating
terms in (8) are the terms related to the bias and the sample variance, when a small step-size is chosen.
The only free parameter in (9) and (11) is the number of iterations/passes.
The ideal stopping rule is achieved by balancing the two terms related to the bias and the sample
variance, showing the regularization effect of the number of passes. Since the ideal stopping rule
depends on the unknown parameters ζ and γ, a hold-out cross-validation procedure is often used to
tune the stopping rule in practice. Using an argument similar to that in Chapter 6 from [25], it is
possible to show that this procedure can achieve the same convergence rate.
We give some further remarks. First, the upper bound in (10) is optimal up to a logarithmic factor,
in the sense that it matches the minimax lower rate in [4]. Second, according to Corollaries 3.4 and
3.6, bT

∗

m ' m
1

2ζ+γ passes over the data are needed to obtain optimal rates in both cases. Finally,
in comparing the simple SGM and the mini-batch SGM, Corollaries 3.4 and 3.6 show that a larger
step-size is allowed to use for the latter.
In the next result, both the step-size and the stopping rule are tuned to obtain optimal rates for
simple SGM with multiple passes. In this case, the step-size and the number of iterations are the
regularization parameters.

Corollary 3.7. Under Assumptions 1, 2 and 3, let ζ ≥ 1/2, δ ∈]0, 1[, b = 1 and ηt ' m−
2ζ

2ζ+γ for
all t ∈ [T ], where T ≤ m2. If m ≥ mδ, and T ∗ = dm 2ζ+1

2ζ+γ e, then (10) holds with probability at
least 1− δ.
Remark 3.8. If we make no assumption on the capacity, i.e., γ = 1, Corollary 3.7 recovers the result
in [29] for one pass SGM.

The next corollary shows that for some suitable mini-batch sizes, optimal rates can be achieved with
a constant step-size (which is nearly independent of the number of sample points) by early stopping.

Corollary 3.9. Under Assumptions 1, 2 and 3, let ζ ≥ 1/2, δ ∈]0, 1[, b = dm 2ζ
2ζ+γ e and ηt ' 1

logm

for all t ∈ [T ], where T ≤ m2. If m ≥ mδ, and T ∗ = dm 1
2ζ+γ e, then (10) holds with probability at

least 1− δ.
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According to Corollaries 3.7 and 3.9, around m
1−γ
2ζ+γ passes over the data are needed to achieve the

best performance in the above two strategies. In comparisons with Corollaries 3.4 and 3.6 where
around m

ζ+1
2ζ+γ passes are required, the latter seems to require fewer passes over the data. However, in

this case, one might have to run the algorithms multiple times to tune the step-size, or the mini-batch
size.
Finally, the last result gives generalization error bounds for ‘batch’ SGM with a constant step-size
(nearly independent of the number of sample points).
Corollary 3.10. Under Assumptions 1, 2 and 3, let ζ ≥ 1/2, δ ∈]0, 1[, b = m and ηt ' 1

logm for all

t ∈ [T ], where T ≤ m2. If m ≥ mδ, and T ∗ = dm 1
2ζ+γ e, then (10) holds with probability at least

1− δ.
As will be seen in the proof from the appendix, the above result also holds when replacing the
sequence {ωt} by the sequence {νt}t generated from batch GM in (14). In this sense, we study the
gradient-based learning algorithms simultaneously.

3.3 Discussions

We compare our results with previous works. For non-parametric regression with the square loss, one
pass SGM has been studied in, e.g., [29, 22, 26, 9]. In particular, [29] proved capacity independent rate
of order O(m−

2ζ
2ζ+1 logm) with a fixed step-size η ' m− 2ζ

2ζ+1 , and [9] derived capacity dependent

error bounds of order O(m−
2min(ζ,1)

2min(ζ,1)+γ ) (when 2ζ + γ > 1) for the average. Note also that a
regularized version of SGM has been studied in [26], where the derived convergence rate there is
of order O(m−

2ζ
2ζ+1 ) assuming that ζ ∈ [ 12 , 1]. In comparison with these existing convergence rates,

our rates from (10) are comparable, either involving the capacity condition, or allowing a broader
regularity parameter ζ (which thus improves the rates).
More recently, [19] studied multiple passes SGM with a fixed ordering at each pass, also called
incremental gradient method. Making no assumption on the capacity, rates of order O(m−

ζ
ζ+1 ) (in

L2(H, ρX)-norm) with a universal step-size η ' 1/m are derived. In comparisons, Corollary 3.4
achieves better rates, while considering the capacity assumption. Note also that [19] proved sharp
rate in H-norm for ζ ≥ 1/2 in the capacity independent case. In fact, we can extend our analysis to
the H-norm for Algorithm 4. We postpone this extension to a longer version of this paper.
The idea of using mini-batches (and parallel implements) to speed up SGM in a general stochastic
optimization setting can be found, e.g., in [21, 8, 24, 15]. Our theoretical findings, especially the
interplay between the mini-batch size and the step-size, can give further insights on parallelization
learning. Besides, it has been shown in [6, 8] that for one pass mini-batch SGM with a fixed step-
size η ' b/

√
m and a smooth loss function, assuming the existence of at least one solution in the

hypothesis space for the expected risk minimization, the convergence rate is of orderO(
√

1/m+b/m)
by considering an averaging scheme. When adapting to the learning setting we consider, this reads as
that if fH ∈ Hρ, i.e., ζ = 1/2, the convergence rate for the average is O(

√
1/m+ b/m). Note that,

fH does not necessarily belong to Hρ in general. Also, our derived convergence rate from Corollary
3.6 is better, when the regularity parameter ζ is greater than 1/2, or γ is smaller than 1.

3.4 Proof Sketch (Error Decomposition)

The key to our proof is a novel error decomposition, which may be also used in analysing other learn-
ing algorithms. One may also use the approach in [12, 11] which is based on the error decomposition,
i.e., for some suitably intermediate element ω̃ ∈ H,
EE(ωt)− inf

w∈H
E = [E(E(ωt)− Ez(ωt)) + EEz(ω̃)− E(ω̃)] + E(Ez(ωt)− Ez(ω̃)) + E(ω̃)− inf

ω∈H
E ,

where Ez denotes the empirical risk. However, one can only derive a sub-optimal convergence rate,
since the proof procedure involves upper bounding the learning sequence to estimate the sample
error (the first term of RHS). In this case the ‘regularity’ of the regression function can not be fully
adapted for bounding the bias (the last term). Thanks to the property of squares loss, we can exploit a
different error decomposition leading to better results.
We first introduce two sequences. The population iteration is defined by µ1 = 0 and

µt+1 = µt − ηt
∫

X

(〈µt, x〉H − fρ(x))xdρX(x), t = 1, . . . , T. (13)
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The above iterated procedure is ideal and can not be implemented in practice, since the distribution
ρX is unknown in general. Replacing ρX by the empirical measure and fρ(xi) by yi, we derive the
sample iteration (associated with the sample z), i.e., ν1 = 0 and

νt+1 = νt − ηt
1

m

m∑

i=1

(〈νt, xi〉H − yi)xi, t = 1, . . . , T. (14)

Clearly, µt is deterministic and νt is a H-valued random variable depending on z. Given the sample
z, the sequence {νt}t has a natural relationship with the learning sequence {ωt}t, since

EJ[ωt] = νt. (15)

Indeed, taking the expectation with respect to Jt on both sides of (4), and noting that ωt depends only
on J1, · · · ,Jt−1 (given any z), one has EJt [ωt+1] = ωt − ηt 1

m

∑m
i=1(〈ωt, xi〉H − yi)xi, and thus,

EJ[ωt+1] = EJ[ωt]− ηt 1
m

∑m
i=1(〈EJ[ωt], xi〉H − yi)xi, t = 1, . . . , T, which satisfies the iterative

relationship given in (14). By an induction argument, (15) can then be proved.
Let Sρ : H → L2(H, ρX) be the linear map defined by (Sρω)(x) = 〈ω, x〉H ,∀ω, x ∈ H. We have
the following error decomposition.
Proposition 3.11. We have

EJ[E(ωt)]− inf
f∈H
E(f) ≤ 2‖Sρµt − fH‖2ρ + 2‖Sρνt − Sρµt‖2ρ + EJ[‖Sρωt − Sρνt‖2]. (16)

Proof. For any ω ∈ H , we have [25, 19] E(ω) − inff∈H E(f) = ‖Sρω − fH‖2ρ. Thus, E(ωt) −
inff∈H E(f) = ‖Sρωt − fH‖2ρ, and

EJ[‖Sρωt − fH‖2ρ] = EJ[‖Sρωt − Sρνt + Sρνt − fH‖2ρ]
= EJ[‖Sρωt − Sρνt‖2ρ + ‖Sρνt − fH‖2ρ] + 2EJ〈Sρωt − Sρνt,Sρνt − fH〉ρ.

Using (15) to the above, we get EJ[‖Sρωt − fH‖2ρ] = EJ[‖Sρωt − Sρνt‖2ρ + ‖Sρνt − fH‖2ρ]. Now
the proof can be finished by considering

‖Sρνt − fH‖2ρ = ‖Sρνt − Sρµt + Sρµt − fH‖2ρ ≤ 2‖Sρνt − Sρµt‖2ρ + 2‖Sρµt − SρfH‖2ρ.

There are three terms in the upper bound of the error decomposition (16). We refer to the deterministic
term ‖Sρµt − fH‖2ρ as the bias, the term ‖Sρνt − Sρµt‖2ρ depending on z as the sample variance,
and EJ[‖Sρωt − Sρνt‖2ρ] as the computational variance. The bias term is deterministic and is well
studied in the literature, see e.g., [28] and also [19]. The main novelties are the estimate of the sample
and computational variances. The proof of these results is quite lengthy and makes use of some
ideas from [28, 23, 1, 29, 26, 20]. These three error terms will be estimated in the appendix, see
Lemma B.2, Theorem C.6 and Theorem D.9. The bound in Theorem 3.3 thus follows plugging these
estimations in the error decomposition.

4 Numerical Simulations

In order to illustrate our theoretical results and the error decomposition, we first performed some
simulations on a simple problem. We constructed m = 100 i.i.d. training examples of the form
y = fρ(xi) + ωi. Here, the regression function is fρ(x) = |x − 1/2| − 1/2, the input point xi is
uniformly distributed in [0, 1], and ωi is a Gaussian noise with zero mean and standard deviation
1, for each i ∈ [m]. We perform three experiments with the same H , a RKHS associated with a
Gaussian kernel K(x, x′) = exp(−(x − x′)2/(2σ2)) where σ = 0.2. In the first experiment, we
run mini-batch SGM, where the mini-batch size b =

√
m, and the step-size ηt = 1/(8

√
m). In the

second experiment, we run simple SGM where the step-size is fixed as ηt = 1/(8m), while in the
third experiment, we run batch GM using the fixed step-size ηt = 1/8. For mini-batch SGM and
SGM, the total error ‖Sρωt− fρ‖2L2

ρ̂
, the bias ‖Sρµ̂t− fρ‖2L2

ρ̂
, the sample variance ‖Sρνt−Sρµ̂t‖2L2

ρ̂

and the computational variance ‖Sρωt − Sρνt‖2L2
ρ̂
, averaged over 50 trials, are depicted in Figures 1a

and 1b, respectively. For batch GM, the total error ‖Sρνt − fρ‖2L2
ρ̂
, the bias ‖Sρµ̂t − fρ‖2L2

ρ̂
and the

7



0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pass

E
rr

o
r

Minibatch SGM

 

 

Bias

Sample Error

Computational Error

Total Error

(a) Minibatch SGM

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pass

E
rr

o
r

SGM

 

 

Bias

Sample Error

Computational Error

Total Error

(b) SGM

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pass

E
rr

o
r

Batch GM

 

 

Bias

Sample Error

Total Error

(c) Batch GM

Figure 1: Error decompositions for gradient-based learning algorithms on synthesis data, where m =
100.
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Figure 2: Misclassification Errors for gradient-based learning algorithms on BreastCancer dataset.

sample variance ‖Sρνt − µ̂t‖2L2
ρ̂
, averaged over 50 trials are depicted in Figure 1c. Here, we replace

the unknown marginal distribution ρX by an empirical measure ρ̂ = 1
2000

∑2000
i=1 δx̂i , where each x̂i

is uniformly distributed in [0, 1]. From Figure 1a or 1b, we see that as the number of passes increases4,
the bias decreases, while the sample error increases. Furthermore, we see that in comparisons with
the bias and the sample error, the computational error is negligible. In all these experiments, the
minimal total error is achieved when the bias and the sample error are balanced. These empirical
results show the effects of the three terms from the error decomposition, and complement the derived
bound (8), as well as the regularization effect of the number of passes over the data. Finally, we
tested the simple SGM, mini-batch SGM, and batch GM, using similar step-sizes as those in the first
simulation, on the BreastCancer data-set 5. The classification errors on the training set and the testing
set of these three algorithms are depicted in Figure 2. We see that all of these algorithms perform
similarly, which complement the bounds in Corollaries 3.4, 3.6 and 3.10.
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