
Vol.:(0123456789)

International Journal of Machine Learning and Cybernetics
https://doi.org/10.1007/s13042-024-02363-5

ORIGINAL ARTICLE

Backdoor learning curves: explaining backdoor poisoning
beyond influence functions

Antonio Emanuele Cinà1 · Kathrin Grosse3 · Sebastiano Vascon2 · Ambra Demontis4 · Battista Biggio4 · Fabio Roli1 ·
Marcello Pelillo2

Received: 17 July 2023 / Accepted: 6 August 2024
© The Author(s) 2024

Abstract
Backdoor attacks inject poisoning samples during training, with the goal of forcing a machine learning model to output an
attacker-chosen class when presented with a specific trigger at test time. Although backdoor attacks have been demonstrated
in a variety of settings and against different models, the factors affecting their effectiveness are still not well understood. In
this work, we provide a unifying framework to study the process of backdoor learning under the lens of incremental learning
and influence functions. We show that the effectiveness of backdoor attacks depends on (i) the complexity of the learning
algorithm, controlled by its hyperparameters; (ii) the fraction of backdoor samples injected into the training set; and (iii)
the size and visibility of the backdoor trigger. These factors affect how fast a model learns to correlate the presence of the
backdoor trigger with the target class. Our analysis unveils the intriguing existence of a region in the hyperparameter space
in which the accuracy of clean test samples is still high while backdoor attacks are ineffective, thereby suggesting novel
criteria to improve existing defenses.

Keywords Backdoor poisoning · Influence functions · Poisoning · Machine learning · Adversarial machine learning ·
Security

1 Introduction

Machine learning models are vulnerable to backdoor poi-
soning [1–4]. These attacks consist of injecting poisoning
samples at training time, with the goal of forcing the trained
model to output an attacker-chosen class when presented
with a specific trigger at test time, while working as expected
otherwise. To this end, the poisoning samples typically need
not only to embed such a backdoor trigger themselves, but
also to be labeled as the attacker-chosen class. As backdoor
poisoning preserves model performance on clean test data, it
is not straightforward for the victim to realize that the model
has been compromised.

Backdoor poisoning has been demonstrated in a plethora
of scenarios [3–5]. In the most common scenario, the user is
assumed to download a pre-trained, backdoored model from
an untrusted source, to subsequently fine-tune it on their
data [3]. As backdoors typically remain effective even after
this fine-tuning step, they may successfully be exploited by
the attacker at test time [1, 2]. Alternatively, the attacker is
assumed to alter part of the training data collected by the
user, either to train the model from scratch or to fine-tune a

 * Antonio Emanuele Cinà
 antonio.cina@unige.it

 Kathrin Grosse
 kathrin.grosse@epfl.ch

 Sebastiano Vascon
 sebastiano.vascon@unive.it

 Ambra Demontis
 ambra.demontis@unica.it

 Battista Biggio
 battista.biggio@unica.it

 Fabio Roli
 fabio.roli@unige.it

 Marcello Pelillo
 pelillo@unive.it

1 DIBRIS, University of Genoa, Genoa, Italy
2 DAIS, Ca’ Foscari University of Venice, Venezia, Italy
3 VITA Lab, École Polytechnique Fédéerale de Lausanne,

Lausanne, Switzerland
4 DIEE, University of Cagliari, Cagliari, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-024-02363-5&domain=pdf
http://orcid.org/0000-0001-9318-6913

 International Journal of Machine Learning and Cybernetics

pre-trained model via transfer learning [6, 7]. In such cases,
the training labels of poisoning samples may be either fully
controlled by the attacker [6] or subject to validation by
the victim [7], depending on the considered threat model.
Backdoor attacks have been shown to be effective in differ-
ent applications and against a variety of models, including
vision [1] and language models [8], graph neural networks
[9], and even reinforcement learning [10]. However, it is
still unclear which factors influence the ability of a model to
learn a backdoor, i.e., to classify the test samples containing
the backdoor trigger as the attacker-chosen class.

In this work, we analyze the process of backdoor learn-
ing to identify the main factors affecting the vulnerability
of machine learning models against this attack. To this end,
we propose a framework that characterizes the backdoor
learning process. The learning process of humans is usu-
ally portrayed using learning curves, a graphical representa-
tion of the relationship between the hours spent practicing
and the proficiency to accomplish a given task. Inspired by
this concept, we introduce the notion of backdoor learn-
ing curves (Sect. 2). To generate these curves, we formu-
late backdoor learning as an incremental learning problem
and assess how the loss on the backdoor samples decreases
as the target model gradually learns them. These backdoor
learning curves are independent of the threat model as they
capture training data and fine-tuning attacks. The slope of
this curve, the backdoor learning slope, which is connected
to the notion of influence functions, quantifies the speed with
which the model learns the backdoor samples and hence its
vulnerability. Additionally, to provide further insights about
the backdoor’s influence on the learned classifiers, we pro-
pose a way to quantify the backdoor impact on learning
parameters, i.e., how much the parameters of a model devi-
ate from the initial values when the model learns a backdoor.

Our experimental analysis (Sect. 3) shows that the factors
influencing the success of backdoor poisoning are: (i) the
fraction of backdoor samples injected into the training data;
(ii) the size of the backdoor trigger; and (iii) the complex-
ity of the target model, controlled via its hyperparameters.
Concerning the latter, our experimental findings reveal a
region in the hyperparameter space where models are highly
accurate on clean samples while also being robust to back-
door poisoning. This region exists as, to learn a backdoor,
the target model is required to increase the complexity of
its decision function significantly, and this is not possible if
the model is sufficiently regularized. This observation will
help identify novel criteria to improve existing defenses and
inspire new countermeasures.

To summarize, the main contributions of this work are:

• We introduce backdoor learning curves as a powerful
tool to thoroughly characterize the backdoor learning
process;

• We introduce a metric, named backdoor learning slope,
to quantify the ability of the classifier to learn backdoors;

• We identify three important factors that affect the vulner-
ability against backdoors;

• We unveil a region in the hyperparameter space in which
the classifiers are highly accurate and robust against
backdoors, which supports novel defensive strategies.

We conclude the paper by discussing related work in Sect. 4,
along with the limitations of our approach and promising
future research directions in Sect. 5.

2 Backdoor learning curves

In this section, we introduce our framework to characterize
backdoor poisoning by means of learning curves and their
slope. Afterward, we introduce two measures to quantify the
backdoor impact on the model’s parameters.

Notation. We denote the input data and their labels
respectively with x ∈ ℝ

d and y ∈ {1, .., c} , being c the num-
ber of classes. We refer to the untainted, clean training data
as Dtr = (xi, yi)

n
i=1

 , and to the backdoor samples injected into
the training set as Ptr = (x̂j, ŷj)

m
j=1

 . We refer to the clean test
samples as Dts = (xt, yt)

k
t=1

 and to the test samples containing
the backdoor trigger as Pts = (x̂t, ŷt)

k
t=1

.
Backdoor learning curves. We leverage previous work

from incremental learning [11, 12] to study how gradually
incorporating backdoor samples affects the learned classi-
fier. In mathematical terms, the learning problem can be
formalized as:

where L is the loss attained on a given dataset by the clas-
sifier with parameters w , and L is the loss computed on
the training points and the backdoor samples, which also
includes a regularization term Ω(w) (e.g., ‖w‖2

2
), weighed

by the regularization hyperparameter � . To gradually incor-
porate the backdoor samples Ptr into the learning process,
we introduce the hyperparameter � ∈ [0, 1] , and increase
it from 0 (unpoisoned classifier) to 1 (poisoned classifier).
As � increases, the classifier gradually learns the backdoor
by adjusting its parameters; for this reason, we make the
dependency of the optimal weights w⋆ on � explicit as w⋆(𝛽)

.1

(1)
w
⋆(𝛽) ∈ arg min

w

L(Dtr ∪ Ptr,w)

= L(Dtr,w) + 𝛽L(Ptr,w) + 𝜆Ω(w),

1 Recall that the formulation reported in Eq. (1) encompasses many
existing learning algorithms, including support vector machines
(SVMs), ridge and logistic classifiers. For example, considering
either � = 0 or � = 1 , the SVM learning problem amounts to mini-
mizing C ⋅

�
L(Dtr,w) + �L(Ptr,w)

�
+

1

2
‖w‖2

2
 , which is equivalent to

International Journal of Machine Learning and Cybernetics

We now define the backdoor learning curve as the curve
showing the behavior of the classifier loss L(Pts,w

⋆(𝛽)) on
the test samples with the backdoor trigger as a function of
� . In the following, we abbreviate L(Pts,w

⋆(𝛽)) as L. Intui-
tively, the faster the backdoor learning curve decreases, the
easier the target model is backdoored. The exact details of
how the model is backdoored do not matter for this analy-
sis, e.g. our approach captures for example both the setting
where the training data is altered as well as the setting where
fine-tuning data is tampered with.

We give an example of two such curves under different
regularizations in Fig. 1. The left plots depict a strongly
regularized classifier. The corresponding backdoor learning
curve (on the right) shows that the classifier achieves low
loss and high accuracy on the backdoor samples only after
poisoning (when � = 1), i.e. even when the loss on the back-
door samples is considered equally important to the loss on
the training samples. The classifier on the right, instead, is
less regularized and thus more complex. Consequently, this
classifier learns to incorporate the backdoor samples much
faster (at low �), namely when the loss on the backdoor
points is taken into account less than the one on the training
data. This highlights that this classifier is probably more
vulnerable to this attack.

Backdoor learning slope. We quantify how fast an
untainted classifier can be poisoned by proposing a novel
measure, namely the backdoor learning slope, that measures

the velocity with which the classifier learns to classify the
backdoor samples correctly. This measure allows us to
compare the vulnerability of a classifier trained with dif-
ferent hyperparameters or consider different poisoning sce-
narios (e.g. when the attacker can inject a different number
of poisoning points or create triggers with different sizes),
allowing us to identify factors relevant to backdoor learning.
Moreover, as we will show, this measure can be used by the
system designer to choose an appropriate combination of
hyperparameters for the task at hand. To this end, we define
the backdoor learning slope as the gradient of the backdoor
learning curve at � = 0 , capturing the velocity of the curve
on learning the backdoor. Formally, the backdoor learning
slope can be formulated as follow:

where the first term is straightforward to compute, and the
second term implicitly captures the dependency of the opti-
mal weights on the hyperparameter � . In other words, it
requires us to understand how the optimal classifier param-
eters change when gradually increasing � from 0 to 1, i.e.,
while incorporating the backdoor samples into the learning
process.

To compute this term, as suggested in previous work in
incremental learning [11], we assume that, while increasing
� , t h e s o l u t i o n m a i n t a i n s t h e o p t i m a l i t y
(Karush–Kuhn–Tucker, KKT) conditions intact. This equi-
librium implies that ∇𝛽∇w

L(w⋆) +
𝜕w⋆

𝜕𝛽
∇2

w
L(w⋆) = 0 . Based

on this condition, we obtain the derivative of interest,

(2)
𝜕L(Pts,w

⋆(𝛽))

𝜕𝛽
=

𝜕L

𝜕w

𝜕w⋆

𝜕𝛽
,

Fig. 1 Backdoor learning curves. Considering an SVM with the
RBF kernel (� = 10) on a toy dataset in two dimensions, we show
the influence of model complexity (controlled by the regularization
hyperparameter � =

1

C
) on backdoor learning. For both the strong

(left) and weak (right) regularization settings, we report two plots.
The left plot shows the two-dimensional data (dots) and decision sur-
face for different values of � (green lines). The right plot shows the
backdoor learning curve, i.e. how the loss decreases as � ranges from

0 to 1, which amounts to learning the backdoor samples. We plot
both the loss on the clean test samples (orange dotted line) and on the
test samples with the backdoor trigger (blue line). The slope of these
curves represents the speed with which the model learns to classify
the backdoor samples (black dots) as blue dots, unveiling that strong
regularization slows down such a process

our formulation if one sets L to be the hinge loss, Ω(w) = 1

2
‖w‖2

2
 , and

� =
1

C
.

Footnote 1 (Continued)

 International Journal of Machine Learning and Cybernetics

Substituting it in Eq. 2 we obtain the complete gradient:

The gradient in Eq. 4 corresponds to the sum of the pairwise
influence function values Iup, loss(xtr, xts) used by Koh
et al. [13]. The authors indeed proposed to measure how
relevant a training point is for the predictions of a given test
point by computing 𝜕L

𝜕𝛽

���𝛽=0 =
∑

t

∑
j Iup, loss(x̂t, x̂j) . To under-

stand how this gradient can be efficiently computed via
Hessian-vector products and other approximations, we refer
the reader to [13] as well as to recent developments in gra-
dient-based bilevel optimization [14–16]. Moreover, we
show in Sect. 3.2.5 (Figs. 13 and 14) an example of the usage
of influence functions for weakly and strongly regularized
models.

The main difference between the approach by Koh et al.
[13] and ours stems from their implicit treatment of regu-
larization and our interest in understanding vulnerability to
a subset of backdoor training points, rather than in providing
prototype-based explanations. However, directly using the
gradient of the loss wrt. � comes with two disadvantages.
First, the slope is inverse to � , and second, to obtain results
comparable across classifiers, we need to rescale the slope.
We thus transform the gradient as:

where we use the negative sign to have positive values cor-
related with faster backdoor learning (i.e., the loss decreases
faster as � grows). Computing 2/� of the gradient allows us
to rescale the slope to be in the interval between [−1, 1] .
Hence, a value around 0 implies that the loss of the backdoor
samples does not decrease. In other words, the classifier does
not learn the backdoor trigger and is hence very robust.

Backdoor impact on learning parameters. After introduc-
ing the previous plot and measure, we can quantify how
backdoors are learned by the model. To provide further
insights about the backdoor’s influence on the learned clas-
sifier, we propose to monitor how the classifier’s parameters
deviate from their initial, unbackdoored values once a back-
door is added. Our approach below captures only convex
learners. As shown by Zhang et al. [17], the impact of a
network weight in non-convex classifiers’ decisions depends
on the layer of which it is part. Therefore, measuring the
parameter deviation in the non-convex case is challenging,
and we leave this unsolved problem for future work.

(3)
𝜕w⋆

𝜕𝛽
= −(∇2

w
L(w⋆))−1 ⋅ ∇𝛽∇w

L(w⋆).

(4)
𝜕L(Pts,w

⋆(𝛽))

𝜕𝛽
= −∇

w
L ⋅ (∇2

w
L)−1 ⋅ ∇𝛽∇w

L.

(5)� = −
2

�
arctan

(
�L

��

||||�=0

)
∈ [−1, 1],

To capture the backdoor impact on learning param-
eters in the convex case, we consider the initial weights
w0 = w

⋆(𝛽 = 0) and w𝛽 = w
⋆(𝛽) for 𝛽 > 0 , and measure

two quantities:

The first measure, � , quantifies the change of the weights
when � increases. This quantity is equivalent to the regulari-
zation term used for learning. The second one, � , quantifies
the change in orientation of the classifier. In a nutshell, we
compute the angle between the two vectors and rescale it to
be in the interval of [0, 1]. Both metrics are defined to grow
as � → 1 , in other words the backdoored classifier deviates
more and more from the original classifier. Consequently,
in the empirical parameter deviation plots in Sect. 3.2, we
report the value of �(�) (on the y-axis) as � (on the x-axis)
varies from 0 to 1, to show how the classifier parameters are
affected by backdoor learning.

3 Experiments

Employing the previously proposed methodology, we car-
ried out an empirical analysis of linear and nonlinear clas-
sifiers. In this section, we start with the experiments aimed
at studying the impact of different factors on backdoor
learning. To this end, we employ the backdoor learning
curves and the backdoor learning slope to study how the
capacity of the model to learn backdoors changes when (a)
varying the model’s complexity, defined by its hyperparam-
eters, (b) the attacker’s strength, defined by the percentage
of poisoning samples in the training set and (c) the trigger
size and visibility. Our results show that these components
significantly determine how fast the backdoor is learned,
and consequently, the model’s vulnerability. Then, leverag-
ing the proposed measures to analyze how the classifier’s
parameters change during backdoor learning, we provide
further insights into the effect of the aforementioned factors
on the trained model. The results presented in this section
will help identify novel criteria to improve existing defenses
and inspire new countermeasures. The source code is avail-
able on the autho r’s GitHu b page.2

3.1 Experimental setup

Our work investigates which factors influence backdoor vul-
nerability considering convex learners and neural networks.

(6)

𝜌 = ‖w𝛽‖ ∈ [0,∞), and 𝜈 =
1

2

�
1 −

w
⊤
0
w𝛽

‖w0‖‖w𝛽‖

�
∈ [0, 1].

2 https:// github. com/ Cinofi x/ backd oor_ learn ing_ curves.

https://github.com/Cinofix/backdoor_learning_curves
https://github.com/Cinofix/backdoor_learning_curves

International Journal of Machine Learning and Cybernetics

In the following, we describe our datasets, models, and the
backdoor attacks studied in our experiments.

Datasets. We carried out our experiments on MNIST
[18], CIFAR10 [19] and Imagenette [20].3 Supplementary
details on the datasets are reported in Appendix A.

When adopting convex learners, we consider the two-
class subproblems as in the work by Saha et al. [7] and Suya
et al. [21]. On MNIST, we choose the pairs 7 vs 1 , 3 vs 0 ,
and 5 vs 2 , as our models exhibited the highest clean accu-
racy on these pairs. On CIFAR10, analogous to prior work
[7], we choose airplane vs frog, bird vs dog, and airplane
vs truck. On Imagenette we randomly choose tench vs truck,
cassette player vs church, and tench vs parachute. For each
two-class subtask, we use 1500 and 500 samples as training
and test set respectively. In the following section, we focus
on the results of one pair on each dataset: 7 vs 1 on MNIST,
airplane vs frog on CIFAR10, and tench vs truck on Image-
nette. The results of the other pairs (reported in Appendix B)
are analogous. When testing our framework against neural
networks, we train on all ten classes of Imagenette. We use
70% and 30% of the entire dataset for training and testing,
respectively.

Models and training phase. To thoroughly analyze how
learning a backdoor affects a model, we consider different
convex learning algorithms, including linear Support Vector
Machines (SVMs), Logistic Regression Classifiers (LCs),
Ridge Classifiers (RCs), nonlinear SVMs using the Radial
Basis Function (RBF) kernel, and deep neural networks. We
train the classifiers directly on the pixel values scaled in
the range [0, 1] on the MNIST dataset. For CIFAR10 and
Imagenette, we instead consider a transfer learning setting
frequently adopted in the literature [13, 22, 23]. Like Saha
et al. [7], we use the pre-trained model AlexNet [24] as a
feature extractor. The convex learners are then trained on
top of the feature extractor. We study these convex learn-
ers due to their broad usage in industry [21], derived from
their excellent results with smaller dataset [25], and good
interpretability [26, 27]. In addition, we include in our evalu-
ation pre-trained Resnet18 and Resnet50 [28] deep neural
networks, sourced from Torchvision [29], which stand as
some of the most extensively employed architectures [17].
These networks are fine-tuned to classify samples from the
Imagenette dataset accurately.

Hyperparameters. The choice of hyperparameters has a
relevant impact on the learned decision function. For exam-
ple, some of these parameters control the complexity of the
learned function, which may lead to overfitting [30], thereby
potentially compromising classification accuracy on test
samples. We argue that a high complexity may also lead to

higher importance to outlying samples, including backdoors,
and thus has a crucial impact on the capacity of the model
to learn backdoors. To verify our hypothesis, we consider
different configurations of the models’ hyperparameters. For
convex learners, we study two hyperparameters that impact
model complexity, i.e., the regularization hyperparameter
� =

1

C
 and the RBF kernel hyperparameter � . To this end,

we take 10 values for � on a uniformly spaced interval on a
log scale from 1e−04 to 1e+02 . For the Imagenette dataset
we extend this interval in [1e−05, 1e+02] . Concerning the
RBF kernel, we let � take 5 uniformly spaced values on a
log scale in [5e−04, 5e−02] for MNIST, [1e−04, 1e−02] for
CIFAR, and [1e−05, 1e−03] for Imagenette. Furthermore,
we take 10 values of � in the log scale uniformly spaced
interval [1e−01, 1e+02] for the RBF kernel. This allowed
us to study a combination of 10 and 50 hyperparameters for
linear classifiers and RBF SVM, respectively.

For deep neural networks, we consider two different
numbers of epochs: 10 and 50, and increase the number of
neurons when using Resnet50 instead of Resnet18. Whereas
size intuitively correlates with complexity, previous works,
including [31], show that decreasing the number of training
epochs reduces the complexity of the trained network as
well. Conversely, increasing epochs leads to overfitting on
the training dataset, thus, a more complex decision function.
Each network is fine-tuned using the SGD optimizer with
a learning rate of 0.001, a momentum of 0.9, and a batch
size of 256.

Backdoor attacks. We implement the backdoor attacks
proposed by Gu et al. [1] against MNIST and CIFAR10.
More concretely, we use a random 3 × 3 patch as the trig-
ger for MNIST, while on CIFAR10, we increase the size to
8 × 8 to strengthen the attack [7]. We add the trigger pattern
in the lower right corner of the image [1]. Samples from
MNIST and CIFAR10 with and without trigger can be found
in Fig. 12. However, in contrast to previous approaches [1],
we use a separate trigger for each base-class i. The reason is
that our study encompasses linear models that are unable to
associate the same trigger pattern to two different classes.
Using different trigger patterns, we enhance the effective-
ness of the attack on these linear models. On the Imagenette
dataset, we use the backdoor trigger developed by [32]. This
attack injects a patterned perturbation mask into training
samples to open the backdoor. A constant value cm refers
to the maximum allowed intensity. We apply the backdoor
attacks to 10% of the training data if not stated otherwise,
and, as done by Gu et al. [1], we force the backdoored model
to predict the i-th class as class (i + 1)%n_classes when the
trigger is shown. We also report additional experiments con-
cerning variations in the trigger’s size or visibility.

3 Imagenette is a subset of 10 classes from Imagenet. We use the 320
px version, where the shortest side of each image is resized to that
size.

 International Journal of Machine Learning and Cybernetics

3.2 Experimental results

In the following, we now discuss our experimental results
obtained with the datasets, classifiers, and backdoor attacks
described above.

3.2.1 Backdoor learning curves

Here we present the results obtained using the learning
curves that we proposed to study the impact of three differ-
ent factors on the backdoor learning process: (i) model com-
plexity, (ii) the fraction of backdoor samples injected, and

(iii) the size and visibility of the backdoor trigger. We report
the impact of these factors on the backdoor learning curves
in Figs. 2 and 3. More specifically, in Fig. 2 we consider
convex classifiers (i.e. LC, RC and RBF SVM) trained on
two-class subproblems (MNIST, CIFAR10, and Imagenette),
whereas in Fig. 3 we show the results for Resnet18 trained
on all the ten classes of Imagenette.

To analyze the first factor, we report the results on the
same classifiers, changing the hyperparameters that influ-
ence their corresponding complexity. In the case of convex
learners, we test different values of the regularization coeffi-
cient, while for Resnet18, we increase the number of epochs.

(a) MNIST trigger size 3 � 3. (b) MNIST trigger size 6 � 6.

(c) CIFAR10 trigger size 8 � 8. (d) CIFAR10 trigger size 16 � 16.

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

Te
st

 lo
ss

RBF SVM = 1e 4 =10

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Te
st

 lo
ss

RBF SVM = 1e 4 =0.01

TS p=0.01
TS+BT p=0.01
TS p=0.1
TS+BT p=0.1
TS p=0.2
TS+BT p=0.2

(e) Imagenette trigger visibility cm = 10. (f) Imagenette trigger visibility cm = 75.

Fig. 2 Backdoor learning curves for: (top row) logistic classifier (LC)
on MNIST 7 vs. 1 with � ∈ {10, 0.01} and trigger size 3 × 3 (left) or
6 × 6 (right); (middle row) Ridge classifier on CIFAR10 airplane vs
frog with � ∈ {100000, 100} and trigger size 8 × 8 (left) or 16 × 16
(right); (bottom row) RBF SVM with � = 1e−04 on Imagenette

tench vs truck with � ∈ {10, 0.1} and trigger visibility c
m
= 10 (left)

or c
m
= 75 (right). Darker lines represent a higher fraction of poison-

ing samples p injected into the training set. We report the loss on the
clean test samples (TS) with a dashed line and on the test samples
with the backdoor trigger (TS+BT) with a solid line

	Backdoor learning curves: explaining backdoor poisoning beyond influence functions
	Abstract
	1 Introduction
	2 Backdoor learning curves
	3 Experiments
	3.1 Experimental setup
	3.2 Experimental results
	3.2.1 Backdoor learning curves

