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Abstract
Combining the accurate physical description of high-fidelity mechanical formulations with the practical
versatility of low-order discrete models is a fundamental and open-ended topic in structural dynamics. Find-
ing a well-balanced compromise between the opposite requirements of representativeness and synthesis is
a delicate and challenging task. The paper systematizes a consistent methodological strategy to identify a
physics-based reduced-order model (ROM) preserving the physical accuracy of large-sized models with
distributed parameters (REM), without resorting to classical techniques of dimensionality reduction. The
leading idea is, first, to select a limited configurational set of representative degrees of freedom contributing
significantly to the dynamic response (model reduction) and, second, to address an inverse indeterminate
eigenproblem to identify the matrices governing the linear equations of undamped motion (structural iden-
tification). The physical representativeness of the identified model is guaranteed by imposing the exact
coincidence of a selectable subset of natural frequencies and modes (partial isospectrality). The inverse
eigenproblem is solved analytically and parametrically, since its indeterminacy can be circumvented by se-
lecting the lumped mass matrix as the primary unknown and the stiffness matrix as a parameter (or vice
versa). Therefore, explicit formulas are provided for the mass matrix of the ROM having the desired low
dimension and possessing the selected partial isospectrality with the REM. Minor adjustments are also out-
lined to remove a posteriori unphysical effects, such as defects in the matrix symmetry, which are intrinsic
consequences of the algebraic identification procedure. The direct and inverse eigenproblem solutions are
explored through parametric analyses concerning a multi-story frame, by adopting a high-fidelity Finite El-
ement model as REM and an Equivalent Frame model as ROM. Before mass matrix identification, modal
analysis results indicate a general tendency of ROM to underestimate natural frequencies, with the underes-
timation strongly depending on the actual mass distribution of the structure. After the identification of the
mass matrix and the elimination of unphysical defects, isospectrality is successfully achieved. Finally, ex-
tensions to prototypical highly massive masonry buildings are presented. The qualitative and quantitative
discussion of the results under variation of the significant mechanical parameters provides useful insights
to recognize the validity limits of the approximations affecting low-order models with lumped parameters.

K E Y W O R D S
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1 INTRODUCTION

Structural dynamics is a constantly evolving area of scientific research gradually embracing the most recent advances in informa-
tion technology and data science. Advanced virtual simulations on digital models, new smart and sustainable design concepts,
rapid wireless communication and sensing techniques, reliable structural health monitoring at the building and urban scales, and
consistent big data management are becoming common complements of the classic background knowledge for researchers and
engineers1,2. Within this stimulating and rapidly evolving scenario, integrating and fusing results from physical-mathematical
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formulations with the output of computational models and experimental data from dynamic measurements is becoming a neces-
sary procedural standard. This trend is gaining substantial ground in the design and management of new and existing structures
and infrastructures, a field that encompasses large monitoring networks that extend up to the urban and even national scale3,4,5.
Specifically, the more recent research trends push forward coupling monitoring systems with digital mechanical models of
structures, to improve classical data-driven methodologies for structural health monitoring6,7,8,9,10. This integration is charac-
terized by a continuous feedback loop between the model and the real structure being monitored, in which the model receives
continuous fluxes of digital information from sensors as inputs and should be able to reproduce in output, often in real-time11,
the system’s current state and its future evolution.

Within this context, the most common choice to simulate the behavior of complex structures with high accuracy is to develop
high-fidelity models, mainly recurring to Finite Element (FE) discretization schemes to solve the governing equations of motion.
Although FE modeling is a powerful methodological tool that occupies a leading and irreplaceable position in structural analysis,
it may become unfeasible in some modern applications due to the high computational demand. Parametric architecture and
engineering design, active or semi-active strategies of vibration control, continuous structural monitoring plans, early warning
systems in disaster management, and rapid structural safety assessment in post-emergency scenarios are only a few examples
of high-performance applications fed by experimental data, which may require very fast (or even real-time) processing times
that call for low-dimension, easily adaptive or rapidly updatable models12,13,14,15,16,17,18. An actual possibility is to implement
parametric substructuring or other reduction techniques19, including surrogate modeling20. In general, model representativeness
is commonly achieved through accurate calibrations based on experimental measurements. A typical example is defining an
objective function weighting spectral differences, which is minimized with iterative numerical techniques21,22,23,24. A reasonable
alternative is to search for a synthetic but representative mechanical description, that is, a lighter (low-order) model that can
still capture the essential dynamical traits of the structural system but trades simulation accuracy for computational efficiency.

Among the others, an important research area that continuously requires mathematically synthetic but physically reliable
structural models is seismic engineering. For masonry buildings, to which the findings discussed in the paper are applied,
Equivalent Frame (EF) modeling constitutes one of the most efficient approaches for describing the seismic response, even
when they exhibit strong nonlinear behavior25,26,27,28. According to this modeling approach, deformations and nonlinearity
are confined to a few specific portions of the structure (piers and spandrels for masonry walls, respectively analogous to the
role of beams and columns for frame-like structures) which are interconnected by undeformable portions (the rigid nodes)
and assembled to form a three-dimensional beam-column equivalent frame. This strategy considerably reduces the number of
structural elements compared to FE models29, and, as a consequence, the degree of freedom of the system (dofs), making the
model extremely efficient in simulating the dynamic response of the structure, particularly in the nonlinear regime. Recent
research in the field of structural monitoring has shown that EF models can be used as efficient digital twins to be coupled with
permanent vibration monitoring systems, augmenting classical data-based Structural Health Monitoring (SHM) applications
with enhanced condition assessment driven by the model’s physics30. The use of dynamic properties identified by SHM or
ambient vibration tests can efficiently address their calibration and guide the choice regarding various epistemic uncertainties,
such as the deformability of diaphragms31 and the quality of wall-to-wall connections32. Moreover, the EF approach may be
well suited for other computationally demanding tasks in machine learning, like generating physics-based training sets for
damage assessment33,34 or defining mechanically consistent bases for physics-informed strategies35.

However, some of the modeling assumptions inherent to the EF method can have relevant implications on the dynamics of the
simulated structure36. For instance, the simplified mass distribution along the height of the building, in which wall masses are
lumped at the floor level, can deviate significantly from the actual mass distribution of the real structure–particularly for thick
walls or large interstory heights, peculiarities often encountered, for example, in monumental masonry palaces. This assumption
can overestimate the importance of inertial effects, lowering the predicted natural frequency of the system. Conversely, the
model’s perfectly rigid nodes do not capture the actual deformability of these masonry portions and make the structure stiffer,
an issue that can be exacerbated by an irregular opening layout37,38. The repercussions can affect, among others, the model-
based inverse procedures typical of structural monitoring such as model updating and digital twinning based on experimental
modal data39,40, structural identification of mechanical parameters, and model-based damage assessment. It is well known that
the uncertainty affecting the solution of second-level inverse problems, such as parameter identification, stems from the one
affecting the first-level problem of modal identification, and it is usually greater 41. In these applications, thus, the detrimental
effects of modeling approximation and errors can be further amplified to an unknown extent.



Analytical identification of dynamic structural models:mass matrix of an isospectral lumped mass model 3

Based on this motivating background, the main objective of the paper is to develop a consistent methodological strategy to
identify a synthetic structural model with lumped parameters (ROM), preserving the descriptive accuracy of a reference large-
sized model with distributed parameters (REM) that stands as an – ideally – perfect representation of the physical system under
investigation. The candidate ROM is searched in the family of physics-based models, whose governing equations of motion are
fully characterized by mechanically consistent coefficients, that is, stiffness and mass matrices. According to these leading ideas,
the effective representativeness of the ROM is pursued by stating an inverse modal problem, based on imposing isospectrality,
that is, by requiring that the modal properties of the ROM coincide with a significant subset of natural frequencies and modes of
the REM (Section 2). According to theorems of linear algebra, the inverse modal problem is solved analytically by assuming the
mass matrix of the ROM as the principal unknown and its stiffness matrix as a known parameter. The identification accuracy and
the solution sensitivity are evaluated by parametric analyses, solved through numerical FE-based methods (Section 3). Indeed, a
family of isospectral lumped mass EF models is identified from a known set of frequencies and modes parametrically generated
by a reference distributed mass FE model. Finally, the application to prototypical case studies highlights some limitations that
may occur when dealing with different typologies of existing masonry structures (Section 4). Adjustments to overcome such
shortcomings by means of mass calibration are provided. Concluding remarks are finally pointed out.

2 STRUCTURAL IDENTIFICATION OF THE MASS MATRIX

2.1 Direct spectral problem: Modal Analysis

The structural model of a generic mechanical system, whose dynamic configuration vector u includes N degrees of freedom
(dofs), is considered. Within the range of small oscillations and in the absence of dissipation, the free undamped response of
the system is governed by a pair of real-valued N × N symmetric structural matrices, the positive-definite mass matrix M and
the stiffness matrix K. Given the mass and stiffness matrices (data), the classical Modal Analysis consists of determining all the
spectral properties of the structural model (the unknowns), that is, the natural frequencies ωi and normalized (unitary amplitude)
modes ψi, for i = 1, ..., N. From a methodological point of view, this mathematical issue can be regarded as a Direct Spectral
Problem, requiring the statement of a linear generalized eigenproblem, reading

(K – λM)ϕ = 0 (1)

whose solution (eigensolution) consists of M ≤ N non-defective and generally distinct real eigenvalues λi = ω2
i , for i =

1, ..., M, that can be collected in the diagonal M×M matrix Λ = diag(λ1, ...,λi, ...,λM), and the related set of real independent
eigenvectors ϕi = αiψi (where αi is a normalization factor), that can be collected column-wise in the N × M modal matrix
Φ = [ϕ1...ϕi...ϕM]. The eigensolution is said to be complete if N = M.

2.2 Inverse spectral problem: Structural Identification

Several deterministic and non-deterministic procedures exist to establish and solve the first-level Spectral Identification Problem,
targeted at determining the spectral properties (matrices Λ and Φ) of a mechanical system if its structural properties (matrices
M and K and, often, the model dimension N) are unknown or uncertain. Classical techniques are based on numerical processing
experimental signals of the structural free or forced response, in the frequency or time domains42,43,44,45. Although – in principle
–spectral properties could be completely determined (M = N), it is relatively common to accept incomplete solutions (M ≤ N).

Once the spectral properties (matrices Λ and Φ) are known from the solution of the Spectral Identification Problem, various
methodologies may be employed to systematically approach the second-level Structural Identification Problem, targeted at
determining the structural properties (matrices M and K) of the mechanical system46,47,48,49. Recognizing the reversed role
assumed by the spectral matrices Λ and Φ (data) and the structural matrices M and K (unknowns) in the governing equation
(1), this mathematical issue can be regarded as an Inverse Spectral Problem. Generally, the available information consists
of an incomplete eigensolution, including the lowest M natural frequencies (eigenvalues Λ) and the corresponding modes
(eigenvectors Φ). In the absence of additional data (e.g. ortho-normalization factors50 or modal sensitivities to known structural
perturbations51), the unknown structural matrices cannot be determined independently of each other52,53.
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For the purpose of the present work, in the following, a parametric strategy is outlined to solve the Structural Mass Iden-
tification Problem of determining analytically – without approximations – the N × N mass matrix M (unknown) of a linear
mechanical model with assigned N × N stiffness matrix K (parameter). The model is required to possess specific (assigned)
spectral properties, that is, a known but incomplete set of frequencies and modes (data), given by the M×M eigenvalue matrix
Λ and the N×M eigenvector matrix Φ, respectively. Naturally, the roles of the mass matrix (unknown) and the stiffness matrix
(parameter) could be exchanged.

From the mathematical viewpoint, the solution of the Structural Mass Identification Problem can be based on noticing that
– regardless of its completeness – the solution of the eigenproblem (1) must satisfy the fundamental relation KΦ = MΦΛ.
By transposing and invoking the symmetry properties K⊤ = K, M⊤ = M and Λ⊤ = Λ, the relation can be expressed more
conveniently as

ΛΦ⊤M = Φ⊤K (2)

which can be regarded as a linear matrix equation, where M is the matrix unknown, ΛΦ⊤ is the matrix coefficient and Φ⊤K
is the known matrix term. It may be worth noting that the coefficient ΛΦ⊤ and the known term Φ⊤K are rectangular M × N
matrices in the general case. According to a theorem of linear algebra54, the conditions for the existence of a symmetric solution
M are satisfied (see Appendix A), and the symmetric solution can be expressed as the sum

M = M̃ + M̂ + M̄ (3)

where three terms of the sum are individually symmetric and read

M̃ =
(
ΛΦ⊤

)† (
Φ⊤K

)
+
(
Φ⊤K

)⊤ [ (
ΛΦ⊤

)† ]⊤
(4)

M̂ = –
(
ΛΦ⊤

)† (
ΛΦ⊤

)(
Φ⊤K

)⊤ [ (
ΛΦ⊤

)† ]⊤
(5)

M̄ =
[
I –

(
ΛΦ⊤

)† (
ΛΦ⊤

) ]
Z
[
I –

(
ΛΦ⊤

)† (
ΛΦ⊤

) ]⊤
(6)

where the dag indicates the Moore-Penrose pseudo-inverse (applicable to rectangular matrices), I is the N × N identity matrix,
and Z is a N × N arbitrary symmetric matrix54. If spectral data are complete (M = N), the Moore-Penrose pseudo-inversion
coincides with the inversion (applied to square matrices), and the last term M̄ vanishes identically. Formulations of nonnegative-
definite and positive-definite solutions to Eq. (3) can be found54,55,56, while the structural identification problem in the presence
of internal resonances can be treated with perturbation methods57.

The analytical solution (3) provides the symmetric mass matrix M of structural models possessing the assigned spectral
properties Λ and Φ. The solution is independent of the eigenvector normalization, as expected. Qualitative and quantitative
remarks can be pointed out to discuss the solution from the mathematical and physical viewpoints

• the identified mass matrix M (solution) nonlinearly depends on the spectral matrices Λ and Φ (data), but is a linear function
of the stiffness matrix K (parameter). Physically, this result states that a family of structural systems with different mass
matrices, parametrized by the respective stiffness matrices, have identical spectral properties (isospectral systems).

• for fixed stiffness matrix K and incomplete spectral data (M < N), the identified mass matrix M is not unique, depending
linearly on the arbitrary matrix Z. Physically, this result states that a family branch of structural systems with the same
stiffness but different mass matrices have an incomplete subset of M identical spectral properties (M-isospectral isostiff
systems).

• incomplete spectral properties Λ and Φ generate anyway complete solutions M, with the same dimensions of the stiffness
K and the arbitrary matrix Z. This remark highlights that the extra (N – M) frequencies and modes that complete the spectra
of the identified structural system are spurious and have no physical meaning.

As a final remark, the formula (3) provides closed-form analytical solution of the structural identification problem, which
profitably allows the solver to by-pass the excessive computational burden and the ill-conditioning issues often related to the
numerical solution of inverse spectral problems based on the constrained minimization of an objective function describing the
modal differences in the structural parameter space.
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F I G U R E 1 (a) Mass matrix identification of an isospectral reduced order model (ROM) starting from the known eigen-
solution of a reference model (REM). In this work, (b) a high-fidelity Finite Element Model (FEM) is assumed as the REM,
whereas a simplified Equivalent Frame Model (EFM) constitutes the ROM.

2.3 Reduced-Order Model Identification

Suppose the REference Model (REM) of a real dynamical system is available. REM could be, ideally, the physical system
itself or, alternately, a sufficiently accurate continuous or discrete mathematical model. REM is assumed to provide a set of
reference natural frequencies and modes of the system, which can be either (i) experimentally identified, if REM coincides with
the physical system itself, or (ii) determined by the analytical solution of the equations governing the free undamped dynamics
of a mathematical model, or finally (iii) carried out from the numerical solution of a high-fidelity computational model, as
commonly happens for complex structural systems.

The primary objective of this work is the structural identification of a discrete synthetic Reduced-Order Model (ROM),
describing the same dynamical system with the desired accuracy, according to a criterion of isospectrality. It is important to note
that ROM is not required to descend directly from REM through reduction processes, such as substructuring or condensation.
Being an accurate model by assumption, REM must be characterized by a high number of N dofs. Being synthetic by definition,
ROM is postulated to be a simplified model, characterized by a lower number Q ≤ N of dofs. The dofs of the ROM are
supposed to be a subset of the dofs of the REM (spatial subsampling). The key requirement is that the spectrum of ROM is
included in the spectrum of the REM. In a relaxed sense, ROM and REM can be considered isospectral systems58. Indeed,
strict isospectrality rigorously indicates the coincidence of all the spectral properties (frequencies and modal shapes). Relaxed
isospectrality between ROM and REM here refers to the coincidence of P ≤ N frequencies and modes. Indeed, the number of
known frequencies and modes is M ≤ N, due to modal truncation (for analytical or computational REM model) or incomplete
spectral identification (for physical REM system). Furthermore, only a subset of P of the known frequencies and modes M
is selected to identify the ROM model. This process of modal selection can be driven by different criteria of inclusion or
exclusion. Roughly, modal selection generally must include all frequencies and modes significantly contributing to a particular
structural analysis (e.g. lowest frequencies and largest participating mass ratios in seismic engineering, internal subharmonic or
superharmonic resonance conditions in nonlinear structural dynamics). On the contrary, modal selection must exclude modes
strongly localized in the REM dofs not included in the subset of ROM dofs. The coincidence of modes, instead, is here intended
as the exact collinearity of the modal subvectors composed of Q out of N dofs, as a consequence of the spatial subsampling of
the REM.

The leading idea is to adapt the methodological strategy of structural identification presented in Section 2.2, which provides
an exact solution for REM, to the identification of the unknown Q × Q mass matrix MROM of an isospectral ROM (Figure 1a).
The strategy is based on knowledge of (i) the spectral properties of REM, consisting of M frequencies, collected in the M × M
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matrix ΛREM, and modes, collected in the N×M modal matrix ΦREM, and (ii) the Q×Q stiffness matrix KROM of the ROM, by
assignment. Therefore, relaxed isospectrality is imposed by assigning the spectral properties of the ROM, by – first – selecting
P out of M frequencies of the REM to define the P × P matrix ΛROM, and – second – selecting P out of M modes of the REM,
properly subsampled to define the Q × P matrix ΦROM. Therefore, the mass matrix MROM is identified by specifying Eq. (3)
according to the formula

MROM = M̃ROM + M̂ROM + M̄ROM (7)

where three terms of the sum read

M̃ROM =
(
ΛROMΦ⊤

ROM

)†(
Φ⊤

ROMKROM

)
+
(
Φ⊤

ROMKROM

)⊤[(
ΛROMΦ⊤

ROM

)†]⊤
(8)

M̂ROM = –
(
ΛROMΦ⊤
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)†(
ΛROMΦ⊤

ROM

)(
Φ⊤

ROMKROM

)⊤[(
ΛROMΦ⊤

ROM

)†]⊤
M̄ROM =

[
I –

(
ΛROMΦ⊤

ROM

)†(
ΛROMΦ⊤

ROM

)]
Z
[

I –
(
ΛROMΦ⊤

ROM

)†(
ΛROMΦ⊤

ROM

)]⊤
where here I stands for the Q × Q identity matrix and Z indicates a Q × Q arbitrary symmetric matrix. It may be worth noting
that the symmetry of the mass matrix MROM cannot be taken for granted a priori, because the term M̂ROM is not symmetric
in the general case (whereas the other terms M̃ROM and M̄ROM are symmetric by construction). The defect of symmetry in the
term M̂ROM is an unavoidable consequence of the required isospectrality. Indeed, the spectral properties ΛROM and ΦROM are
requested to belong to the eigensolution space of the stiffness matrix KROM with respect to the unknown mass matrix MROM
(and do not belong to eigensolution space of the known stiffness matrix KROM). Moreover, the structural symmetry of the term
M̄ROM prevents using the arbitrary matrix Z to compensate for the symmetry defect.

The structural identification of the ROM isospectral to the REM is complete with the mass matrix determined according to
Eq. (7). Naturally, the role of the ROM stiffness matrix KROM (assigned parameter) and the ROM mass matrix MROM (unknown)
can be exchanged, with a few algorithmic adjustments of a minor methodological value59. Anyway, the final purpose is to
achieve all the structural properties of a ROM that is both synthetic and representative. Representativeness is guaranteed by
isospectrality, while synthesis can be pursued by enforcing low-dimensionality (e.g. by setting P ≪ N) and shape simplicity of
the assigned stiffness matrix KROM (e.g. by requiring KROM to be a banded matrix). It may be worth noting that the reference
structural matrices MREM and KREM are not involved in the identification procedure, so the identifier does not have particular
constraints in defining REM (mathematically or experimentally), provided that the accuracy of the model is sufficient to provide
the necessary spectral information ΛREM and ΦREM, from which the data ΛROM and ΦROM must be selected and subsampled.
In the following Section, this problem is attacked by adopting a high-fidelity Finite Element Model (FEM) as REM, and a
simplified Equivalent Frame Model (EFM) as ROM (Figure 1b).

3 PARAMETRIC ANALYSIS

This section presents a testbed of relevant physical interest aimed at the identification of an isospectral EFM of a real civil struc-
ture. The EFM, commonly employed to simulate the seismic response of masonry buildings, describes the (ideally) continuous
distribution of wall masses along the elevation as a discrete ensemble of masses lumped at the floor levels. It is of primary inter-
est, for this reason, to focus the general inverse procedure developed in Section 2.2 on the identification of an isospectral mass
matrix for EFM. This task is carried out on a benchmark case study, a model sufficiently elaborated to allow the execution of
parametric and convergence analyses and simple enough to be governed by a few mechanical parameters.

The mechanical model under investigation is a simplified but realistic representation of an actual civil structure developing in
height, i.e. a multi-story building exhibiting a nondissipative elastic behavior at low oscillation amplitudes. The physical system
is characterized by the continuous interstory distribution of mass and stiffness provided by the vertical structural elements
(reinforced concrete columns, masonry piers, etc.) and, at the floor level, by the additional mass given by horizontal elements
(floor beams and diaphragms, vaults, etc.).

The structure is idealized by a vertical cantilever beam of length L oscillating transversally in the plane, with constant cross-
sectional properties along its length and a certain number of added point masses at the floor levels. The REM and ROM
discretizations follow two alternative approaches (Figure 1b) that differ in mesh refinement but share the same constitutive finite
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F I G U R E 2 Convergence of REM to the analytical eigensolution of a continuous Timoshenko beam with no added masses
(parameters ns = 3, Ls = 4m, b = 1m, h = 3m, E = 3000MPa, ν = 0.5, ρ = 2200 kg m–3, q = 4000N m–2, see Section
3.1) for subsequent mesh refinements, i.e. increasing the total number of sub-elements nel.

element, a two–nodes Timoshenko planar beam with two nodal degrees of freedom at each node, transversal displacement u
and rotation θ. The element stiffness and mass matrices are reported in Appendix B.

REM model is a high-fidelity FEM that reproduces the modal properties of the physical structure with the desired precision
(left of Figure 1b). The refined mesh is composed of 4 finite elements per story. Comparing REM with the analytical solution
of a vibrating Timoshenko beam (with no additional masses at the floor level), this discretization grants a relative error in
estimating the first three natural frequencies lower than 1% and achieves an almost perfect correlation between mode shapes,
with MAC values60 very close to unity (see Figure 2). In this case, the length ℓ of the finite elements is much smaller than the
interstory length Ls, i.e. ℓ << Ls. Conversely, ROM is a simplified model that, according to EFM idealization, has a single
finite element for each story (right of Figure 1b) and lumps both the wall and story masses at the floor nodes. In this case, the
length of the finite element coincides with the interstory length, i.e. ℓ = Ls.

3.1 Parametrization

REM and ROM models are parametrized by the number of floors ns and a set of mechanical parameters that vary independently
from each other. The independent dimensional parameters and their assumed range of variation are reported at the top of Table
1. From a structural point of view, ns distinguishes single-story buildings from multi-story buildings and, in general, low-rise
from high-rise structures. The other mechanical parameters define the geometrical properties of the beam cross-section, the
elastic property of the constitutive materials, and the beam and floor masses. By defining the interstory length Ls, the total
length of the beam is L = Lsns. The beam cross-section is rectangular with height b and width h. The material is isotropic and
characterized by Young’s modulus of elasticity E and Poisson coefficient ν – which univocally determine the shear modulus G,
see Appendix B – with mass density ρ. Finally, the parameter q accounts for the typical self weight per unit area of different
types of horizontal diaphragms, ranging from light timber floors to heavy reinforced concrete floors or masonry vaults.

The dependent dimensional parameters are reported at the bottom of Table 1. The total floor mass mf is the result of the floor
load q acting on the area of influence at the top of the beam, assuming an influence width of 2.5m. The total mass between
floors, the mass between floors ms, instead corresponds to the mass of the sole beam.
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T A B L E 1 Independent and dependent dimensional parameters of the oscillating beam and their assumed range of variation.

Parameter Description Units Range

Ls interstory length m 2–6
b cross-section width m 0.4–1
h cross-section height m 2–6
E Young modulus MPa 1000–3000
ν Poisson coefficient - 0–0.5
ρ mass density kg m–3 1600–2200
q floor load kN m–2 0–8

mf = 2.5qh/g floor mass kg 0–12 236.6
ms = bhρLs interstory mass kg 2560–79 200

T A B L E 2 Nondimensional mass and slenderness parameters.

Parameter Description Units Range

η floor-to-interstory mass ratio - 0–1.5
δ lateral slenderness parameter - 1–10

A minimum set of nondimensional parameters useful to synthetically describe the system is defined by

η =
mf

ms
, δ =

Ls

r
(9)

where η is the floor-to-interstory mass ratio and δ accounts for the beam lateral slenderness, while r2 = Ix/A is the (square of)
radius of gyration of the cross-section. This expedient effectively reduces the analysis space to only two prevalent dimensions.
Both parameters assume only positive values, and for η tending to infinity, that is, when the floor mass tends to zero, the
REM and ROM mass discretizations coincide with each other. Parametric analyses are carried out by exploring the parameter
space through Monte Carlo sampling, assuming a uniform distribution of the dimensional parameters and a possible range of
variation according to Table 1. The ranges of nondimensional parameters explored in the analyses, which are representative of
the majority of practical cases, are reported in Table 2.

3.2 Modal analysis

The agreement between the ROM and the reference REM is investigated in the framework of the direct eigenproblem for both
natural frequencies and mode shapes, focusing initially on models with three interstories, i.e. ns = 3. The modal distance
between the models is quantified by the relative frequency difference with respect to REM∆f REM,ROM = (fROM–fREM)/fREM and
is reported for the three lowest frequency modes. The correlation between mode shapes is estimated by the well-known MAC
indicator60. As an alternative, other criteria combining and weighting frequency differences and modal assurance measures
could be employed to assess the performance of the updating procedure with a single synthetic index21. Figure 3 reports the
results of 5000 Monte Carlo simulations in terms of frequency differences and MACs in the plane η – δ, which form curved
surfaces confirming the unique dependence on these two parameters.

The results highlight that ROM generally tends to underestimate the (reference) natural frequencies of REM, with errors
becoming larger for higher-frequency modes. This difference (Figure 4a) is governed by the floor-to-interstory mass ratio η

(Figure 4c), while variations in the lateral slenderness δ appear to be secondary (Figure 4e). In particular, the lower the η ratio,
the higher the frequency difference – which, in the limit case η = 0 corresponding to a null floor mass, is already greater
than 10% for the second mode. The agreement between the mode shapes (Figure 4b) is acceptable, with MACs higher than
0.8, a value that is commonly considered the lower threshold for MAC acceptance. As in the previous case, low η ratios have
a detrimental effect (Figure 4d). The lower the mass ratio, the worse the mode shape correlation, with MAC values quickly
approaching the lower acceptance limit for higher modes. Lateral slenderness has a relevant effect on this aspect, in which the
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F I G U R E 3 Solution of the direct problem (modal analysis) for ns = 3. Comparison between REM and ROM models
in terms of relative difference in natural frequency ∆f and mode shape correlation index MAC, as a function of the floor-to-
interstory mass ratio η and lateral slenderness parameter δ.

underestimation of higher-mode frequencies increases significantly for slender beams (Figure 4f). The influence of the floor-
to-interstory mass ratio (Figure 3 and Figure 4) on the quality of the EFM approximation provided by ROM can be easily
understood considering that, in two extreme cases (i) when all the mass is concentrated at the floor level, i.e. the interstory mass
tends to zero and η grows to infinity, the EF model is exactly reproducing the actual mass distribution of the reference structure,
whereas (ii) when all the mass is distributed at the interstory level, i.e. the floor mass tends to zero as η does, the EF model is
grossly overestimating the inertia of the beam (since the distributed mass of the interstory is entirely lumped at the floor level).
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F I G U R E 4 Solution of the direct problem (modal analysis) for ns = 3. Comparison between REM and ROM models in
terms of (a) relative difference in natural frequency ∆f and (b) mode shape correlation index MAC, as a function of the floor-
to-interstory mass ratio η. The observed variance is due (c,d and e,f) to the variation in the lateral slenderness parameter δ.

3.3 Mass matrix identification

The previous analyses highlight how the EF approach can lead to a general underestimation of natural frequencies, in particular
when the mass of walls prevails over the floor mass, more significantly for higher-frequency modes than for lower-order ones.
This section leverages the inverse mass identification procedure theoretically developed in Section 2.2 and implemented in
Section 2.3 to identify, in a loose sense, a ROM model isospectral with the REM model.

Figure 5 shows a simple explanatory example for a three-story system, i.e. ns = 3. The REM system (Figure 5a), by construc-
tion, is composed of a N × N symmetric stiffness matrix KREM and an N × N diagonal mass matrix MREM, with N = 12 (four
beams per story). Rotational dofs have no associated mass (see Appendix B) and, thus, are condensed statically and omitted
from the problem formulation without altering the original solution. This expedient effectively removes the singularity of the
mass matrix, which would be deleterious for the identification. Further details are reported in Appendix C.

The ROM model (Figure 5b), according to the EF approach, is composed of just one beam per story. The system has thus
dimensions Q = 3. As already shown by direct simulations (Section 3.2), ROM tends to underestimate the natural frequencies
of REM (orange line in Figure 5b) with a direct relationship with frequency – the higher the REM frequency mode, the higher
the underestimation and the relative frequency error.

An isospectral ROM* model is identified by selecting a number of modes equal to the ROM dimension, that is P = Q = 3,
in particular the first P modes from the M modes set of REM, appropriately sampled in common dofs (see Section 2.3). The
identified mass matrix M∗

ROM (Figure 5c) is quasi-symmetric and generally non-diagonal, with off-diagonal terms representing
inertial couplings within the system. The identified model satisfies the relaxed modal isospectrality criteria defined in Section
2.3, with relative errors in frequency comparable to the machine precision and, practically, unitary MAC indicators.

Indeed, employing the general form of the identified mass matrix in finite element codes is not so straightforward. Either for
research or commercial use, these codes commonly assume a diagonal mass matrix, a choice that grants certain advantages in
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F I G U R E 5 Identified mass matrix M∗ for an isospectral ROM (parameters ns = 3, Ls = 4m, b = 1m, h = 3m, E =

3000MPa, ν = 0.5, ρ = 2200 kg m–3, q = 4000N m–2, see Section 3.1). Spectral matrices for (a) REM and (b) ROM. (c)
General form of the identified mass matrix and (d) closest diagonalized form. On the left, results in terms of relative frequency
differences ∆f and MAC values with respect to REM.
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F I G U R E 6 Solution of the inverse problem (mass identification) for ns = 3. Comparison between REM and identified
ROM (a) in terms of relative difference in natural frequency ∆f and (b) mode shape correlation index MAC, as a function of the
floor-to-interstory mass ratio η. The (c) variations in the mass matrix are reported, for each dofs, in terms of relative difference
with respect to the original translational mass.

memory management and computational efficiency at the expense of loss of accuracy in the eigensolution. In this respect, it
is worth exploring other diagonalized solutions. Adopting the Frobenius norm as a distance metric, the closest diagonal mass
matrix is just its diagonal part, that is diag (M∗

ROM). The mass-diagonalized identified model (Figure 5d) appears to minimize,
in a least-square sense, the sum of the relative frequency differences for all the modes, improving the correlation between the
mode shapes as well. In the following, this model will be referred to as diagonalized.

It is worth remarking that other algorithmic choices could be made to recover a diagonal mass matrix. Another well-known
diagonalization technique is the row-sum lumping (rsl(M∗

ROM) in Figure 5), which has the advantage of keeping unchanged the
total mass of the identified model. This operation significantly improves the agreement in frequency for the fundamental mode
of oscillation of the beam, the first flexural mode which usually develops as the lowest-frequency mode in three-dimensional
buildings too. For this reason, this updating strategy will be adopted in the analysis of pseudo-experimental case studies (Section
4).

These aspects are further investigated by applying the mass identification procedure to the Montecarlo simulations already
solved in the direct problem (Section 3.2). The focus is put on assessing the differences in the translational masses between
the identified ROM mass matrix in its diagonalized form diag (M∗

ROM) and the original mass matrix MROM. Figure 6a,b shows
the results of the comparison in terms of relative frequency differences and MAC values with respect to REM, respectively.
Figure 6c assesses the results of the mass matrix identification by comparing the identified masses with the original ones. The
alteration between the original translational mass and identified mass is estimated by the relative mass variation∆MROM,ROM*

ii =

(MROM*
ii – MROM

ii )/MROM
ii for all the diagonal entries. This quantity effectively corresponds, in relative terms, to the variation to

be applied to the ROM masses lumped at the floor level to obtain the identified model. The results show that, generally, the
masses of all the floors need to be reduced – being the stiffness unchanged, this is in accordance with the underestimation of
natural frequency previously highlighted. Particularly, the masses of the last floor are those that should undergo the biggest
change, with relative variation ranging from –10% for η = 1 down to –40% in the limit case η = 0. The first and middle floor
masses are less affected, with variation in the range –10% to –20% depending also on δ. More detailed results are reported in
Table 3, which also includes the cases of one- and two-story systems.



Analytical identification of dynamic structural models:mass matrix of an isospectral lumped mass model 13

T A B L E 3 Solution of direct problem and mass identification for ns ranging from one to three stories.

REM, ROM REM, ROM*

η ns ∆f1 ∆f2 ∆f3 MAC2 MAC3 ∆M11 ∆M22 ∆M33 ∆f1 ∆f2 ∆f3 MAC2 MAC3

0.05 1 -0.196 -0.352 0
2 -0.074 -0.209 0.942 -0.151 -0.329 0.100 -0.117 0.987
3 -0.038 -0.112 -0.225 0.981 0.912 -0.176 -0.129 -0.334 0.113 0.007 -0.146 0.999 0.957

0.15 1 -0.166 -0.304 0
2 -0.064 -0.180 0.955 -0.143 -0.282 0.084 -0.097 0.985
3 -0.033 -0.097 -0.201 0.985 0.937 -0.168 -0.124 -0.286 0.099 0.007 -0.126 0.998 0.963

0.25 1 -0.143 -0.265 0
2 -0.056 -0.160 0.965 -0.137 -0.247 0.073 -0.083 0.986
3 -0.030 -0.086 -0.183 0.988 0.955 -0.161 -0.121 -0.250 0.088 0.008 -0.112 0.998 0.970

0.35 1 -0.123 -0.231 0
2 -0.049 -0.145 0.975 -0.134 -0.216 0.064 -0.072 0.988
3 -0.026 -0.078 -0.170 0.991 0.969 -0.155 -0.121 -0.219 0.079 0.009 -0.101 0.998 0.977

0.45 1 -0.108 -0.203 0
2 -0.043 -0.133 0.981 -0.130 -0.192 0.057 -0.063 0.990
3 -0.023 -0.071 -0.159 0.993 0.978 -0.150 -0.120 -0.194 0.071 0.010 -0.093 0.998 0.983

0.55 1 -0.095 -0.180 0
2 -0.039 -0.124 0.986 -0.128 -0.172 0.051 -0.057 0.991
3 -0.021 -0.066 -0.151 0.995 0.984 -0.145 -0.121 -0.174 0.066 0.011 -0.086 0.998 0.987

0.65 1 -0.085 -0.162 0
2 -0.035 -0.116 0.989 -0.125 -0.155 0.047 -0.052 0.993
3 -0.019 -0.062 -0.144 0.996 0.989 -0.140 -0.120 -0.157 0.061 0.012 -0.080 0.998 0.989

0.75 1 -0.077 -0.147 0
2 -0.032 -0.109 0.992 -0.122 -0.142 0.043 -0.047 0.994
3 -0.018 -0.058 -0.137 0.996 0.991 -0.135 -0.117 -0.143 0.056 0.012 -0.075 0.998 0.992

0.85 1 -0.070 -0.135 0
2 -0.029 -0.103 0.993 -0.118 -0.131 0.040 -0.044 0.995
3 -0.016 -0.055 -0.130 0.997 0.993 -0.131 -0.115 -0.132 0.053 0.012 -0.071 0.998 0.993

0.95 1 -0.066 -0.128 0
2 -0.028 -0.096 0.994 -0.111 -0.122 0.037 -0.040 0.995
3 -0.016 -0.051 -0.122 0.997 0.994 -0.124 -0.107 -0.123 0.049 0.011 -0.065 0.998 0.994

1.05 1 -0.058 -0.113 0
2 -0.024 -0.094 0.996 -0.113 -0.111 0.036 -0.038 0.996
3 -0.014 -0.050 -0.120 0.998 0.996 -0.122 -0.112 -0.112 0.047 0.011 -0.063 0.998 0.995

1.15 1 -0.056 -0.109 0
2 -0.023 -0.090 0.996 -0.109 -0.107 0.034 -0.036 0.996
3 -0.013 -0.048 -0.115 0.998 0.997 -0.118 -0.107 -0.108 0.045 0.011 -0.060 0.998 0.996

1.25 1 -0.049 -0.096 0
2 -0.020 -0.087 0.998 -0.108 -0.097 0.033 -0.035 0.997
3 -0.012 -0.046 -0.111 0.999 0.998 -0.115 -0.110 -0.097 0.043 0.011 -0.058 0.998 0.997
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T A B L E 4 Example cases of residential buildings and monumental palaces built with masonry, with a different number of
stories, light or heavy foors. Material properties are shared among all the examples (E = 2500MPa, ν = 0.5, ρ = 2100 kg m–3).

Case Description ns b (m) h (m) Ls (m) q (kN m–2) η δ

a Low-rise building with light floors 2 0.5
3 3 2

0.162
3.464b Mid-rise building with light floors 4 0.65 0.124

c High-rise building with light floors 6 0.8 0.101

d Low-rise building with heavy floors 2 0.5
3 3 5

0.405
3.464e Mid-rise building with heavy floors 4 0.65 0.311

f High-rise building with heavy floors 6 0.8 0.253

g Mid-rise palace with light floors 4 0.8 4 5 2 0.061 4.330h High-rise palace with light floors 6 1 0.049

i Mid-rise palace with heavy floors 4 0.8 4 5 5 0.182 4.330j High-rise palace with heavy floors 6 1 0.146

4 APPLICATION TO PROTOTYPICAL MASONRY STRUCTURES

The previous section provided a general overview of the modal behavior of a lumped mass ROM when simulating a distributed
mass REM, highlighting its tendency to underestimate natural frequencies and proposing a mass-matrix identification strategy to
improve its spectral properties. The purpose of this section is to address in detail some practical cases that are often encountered
in the modeling of existing or new structures, focusing in particular on masonry buildings. For the seismic analysis of this class
of structures, in fact, a ROM approach such as the EFM (Section 3.3) is often adopted to keep a low computational burden, even
for accurate nonlinear dynamic analyses. In particular, the following analysis employs numerical results generated by REM for
prototypical cases as pseudo-experimental modal data for the ROM identification procedure.

It is interesting, first, to assess the value of the adimensional parameters that govern the ROM direct problem in common
cases. Second, solving the identification procedure with the proper mass diagonalization strategy can provide useful indications
regarding model updating, in particular for all those cases in which the model dynamics plays a fundamental role and requires
an accurate model calibration. That is, for example, to properly capture structural resonance with the seismic input, or to employ
the modal properties of the model as a proxy for damage in model-driven structural health monitoring17.

The examples analyzed represent typical structural configurations of existing masonry buildings, either residential buildings
or historical palaces, low- (two stories), mid- (four stories), or high-rise (six stories), with homogeneous geometrical and mate-
rial properties along the height – except for wall thickness which, according to common construction rules, is decreasing with
increasing height. The structures are modeled as rigidly connected to the ground, i.e., assuming a fixed-base condition (Section
3.1) and no soil-structure interaction. Two different typologies of flooring systems are considered, which differ in terms of their
mass contribution to the floor level. The first type, light floor, is representative of light horizontal diaphragms which can be
encountered in historical buildings, such as timber floors. The second type, heavy floor, accounts for the presence of heavier
reinforced concrete floors or masonry vaults. Indeed, in order to keep the analysis and its results as general as possible, the sim-
ulation does not capture other structural specificities (such as the story variability in height, or the possible presence of different
types of diaphragms).

Table 4 reports, for the made-up examples, the dimensional parameters and resulting adimensional parameters µ and δ that
govern the direct problem for ROM. It is clear how the floor-to-story mass ratio increases primarily moving from light to
heavy floors and, secondarily, in low-rise buildings compared to high-rise (due to thinner walls). The limited variation of the
slenderness parameter δ depends on the cross-sectional geometry of masonry piers.

Table 5 reports the solution of modal analysis for ROM compared to the reference natural frequency of REM. Here, the
mass identification procedure follows the row-sum diagonalization (see Section 3.3) focusing on improving the agreement
of the first or fundamental natural frequency. This choice goes in the direction of giving practical indications regarding the
calibration of fundamental flexural modes in actual three-dimensional models of structures36,31,61,32. These modes develop at
low frequencies provided a certain rigidity of diaphragms, are usually the easiest to excite (for example, by base accelerations)
and, thus, have a great impact on the dynamic response. The results, as already shown by Montecarlo simulations (Section 3.3),
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T A B L E 5 Mass identification for the example cases reported in Table 4. The procedure adopts a first-mode oriented opti-
mization (row-sum method, Section 3.3).

ROM ROM*

Case ∆fREM
1 ∆MROM

11 ∆MROM
22 ∆MROM

33 ∆MROM
44 ∆MROM

55 ∆MROM
66 ∆MROM

tot ∆fREM
1

a -0.061 -0.034 -0.067 -0.046 -0.032
b -0.021 -0.094 0.028 0.059 -0.113 -0.020 -0.006
c -0.010 -0.098 0.029 -0.003 0.002 0.064 -0.121 -0.013 -0.002

d -0.047 -0.033 -0.048 -0.039 -0.025
e -0.017 -0.087 0.024 0.053 -0.089 -0.018 -0.005
f -0.009 -0.091 0.026 -0.001 -0.000 0.059 -0.099 -0.012 -0.001

g -0.023 -0.096 0.030 0.068 -0.134 -0.019 -0.006
h -0.011 -0.099 0.034 -0.006 -0.001 0.075 -0.141 -0.013 -0.002

i -0.020 -0.090 0.026 0.064 -0.112 -0.018 -0.005
j -0.010 -0.095 0.032 -0.004 -0.003 0.072 -0.123 -0.012 -0.001

highlight the need to reduce the ROM masses to obtain good agreement in the first natural frequency. The greatest difference is
observed in low-rise buildings with light floors, i.e. case a, where the fundamental frequency of ROM is 6% lower than REM.
As presumable, this error becomes smaller the higher the number of stories. For mid- and high-rise cases, with low or heavy
floors, the underestimate is bounded below the 3%.

The mass identification procedure points out that the greatest change occurs systematically on the top floor where, in several
cases (b,c,g-j), the floor mass undergoes reductions greater than 10%. Nonetheless, the variation of the total mass remains
quite limited, ranging from 1% to 5%. In case a, a reduction of just 5% of the total mass allows halving the error committed in
frequency.

4.1 Rigid nodes

It should be clarified that the EFM modeling approach assumes that specific portions of the masonry walls are undeformable.
These portions, called rigid nodes, are located between two subsequent masonry piers. This assumption is legitimate in the
framework in which this modeling approach has been developed, the seismic analysis of existing masonry structures. In the
strongly nonlinear regime, the deformations observed for these masonry portions in buildings damaged by earthquakes are
negligible compared with those of piers and spandrels, where most of the damage concentrates62,63. However, this simplification
becomes much stronger under operational conditions – small deformation and low vibration amplitudes – and necessitates
further analyses.

Rigid nodes reduce the deformable length of the pier Ls by an amount equal to the height of the rigid node Lr. According
to the literature, this can be defined based on geometrical or mechanical rules38. The effective deformable length is, therefore,
Ls,eff = Ls – Lr and the ratio ι = Ls,eff/Ls expresses the deformable part of the interstory (Figure 7). A ratio equal to unity
corresponds to no rigid node, as assumed in the cases already analyzed. In actual EFM of masonry buildings, on the other hand,
this ratio may vary from 0.8 for a regular arrangement of openings down to 0.6 for an irregular one38,64.

Table 6 presents the results for cases a and b introduced in the previous Section, assuming different heights of the rigid node
portion. It is evident how the effect of the rigid node on the fundamental frequency is not only competing with the one caused
by mass lumping but prevails over it. The introduction of rigid nodes effectively increases the stiffness of the model so that, as
expected, the fundamental frequency grows rapidly as well. In particular, EFM with rigid nodes tends to overestimate the first
frequency of REM. This effect is more relevant for mid-rise buildings (case b), where the number of rigid nodes increases with
the number of stories.
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F I G U R E 7 EFM of a masonry wall with rigid nodes.

T A B L E 6 Mass identification for example cases a,b of Table 5, with different values of the ratio ι which represents the
deformable height of the pier excluding the rigid node. The procedure adopts a first-mode oriented diagonalization (row-sum
lumping method, Section 3.3).

ROM ROM*

Case ι ∆fREM
1 ∆MROM

11 ∆MROM
22 ∆MROM

33 ∆MROM
44 ∆MROM

tot ∆fREM
1

0.8 0.027 0.058 0.140 0.088 -0.031
a 0.7 0.078 0.106 0.271 0.166 -0.030

0.6 0.133 0.156 0.423 0.253 -0.030

0.8 0.107 -0.074 0.187 0.235 0.225 0.133 0.002
b 0.7 0.194 -0.088 0.266 0.336 0.519 0.227 0.005

0.6 0.296 -0.121 0.346 0.447 0.915 0.334 0.008

For case a, differences in frequencies range from around 3% for ι = 0.8 and grow larger than 10% when ι = 0.6. The relative
differences between the identified and starting masses are positive, meaning that floor masses should be increased. The total
mass variation ranges, for case a, from around 9% up to 25%.

5 CONCLUSIONS

A consistent methodological strategy has been conceived and developed to identify a low-order physics-based model with
lumped mass and stiffness parameters (ROM), required to be (i) sufficiently synthetic for high-performance applications, like
parametric design, state feedback controls, fast model updating, rapid health monitoring, and also (ii) sufficiently accurate to
preserve the descriptive accuracy of large-sized high-fidelity models with distributed parameters (REMs), considered as ideal
reference representations of a physical system under investigation.

The rationale behind the identification methodology consists of – first – searching for the desired dimension reduction of the
ROM by selecting a limited configurational set of representative degrees of freedom contributing significantly to the dynamic
response (spatial subsampling), while – second – pursuing the highest possible representativeness by imposing the exact coinci-
dence of the modal properties with a selectable subset of natural frequencies and modes known from the REM (mode selection).
From the mathematical viewpoint, this leading idea has been substantiated by stating an inverse indeterminate eigenproblem.
By leveraging theorems of linear algebra for the existence of closed-form solutions, the inverse eigenproblem has been solved
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analytically and parametrically, since its natural indeterminacy can be by-passed by selecting the lumped mass matrix as the
primary unknown, and the stiffness matrix as the assigned parameter to span a family of isospectral solutions.

A comprehensive parametric analysis has been conducted by considering a multi-story frame building as a benchmark. Specif-
ically, a high-fidelity finite element model (FEM) has been adopted as REM, while a simplified equivalent frame model (EFM)
has been chosen to play the role of ROM. Before mass matrix identification, modal results have highlighted how the ROM
consistently underestimates the natural frequencies of the REM. This discrepancy grows larger the lower the ratio between the
floor mass and the interstory mass and is more pronounced for low-rise structures. After the mass matrix identification, the
isospectral ROM is capable of completely removing the modal mismatch in terms of both frequencies and modes. The identified
mass matrix is generally banded, giving rise to internal couplings of inertial nature. Therefore, different diagonalization tech-
niques have been explored to decouple the system a posteriori, focusing on those that improve frequency agreement between
fundamental modes.

To verify the proposed identification strategy for practical application to highly massive structures, a technically significant
cross-section of prototypical masonry buildings has been selected and analyzed according to the EFM description. The results
of the analysis reveal that low-rise masonry structures with light floors are the most affected by mass lumping. The identifi-
cation procedure has suggested that reducing the model masses, particularly at the top story, may be crucial to mitigate the
underestimation of the fundamental frequency. However, the impact of such an assumption on the estimate of inertial effects
induced by seismic actions (i.e. the field in which, nowadays, such models are mostly diffused) must be investigated further.
On the contrary, the presence of rigid nodes has a competing effect that becomes dominant in high-rise buildings and calls for
additional study. The close-future developments will explore the possibility of using mass-calibrated EFM models in differ-
ent lines of research, including structural health monitoring. In this context, achieving a well-balanced compromise between
computational efficiency and simulation accuracy is the key to successfully fusing the virtual models with real-time streams
of digital data, finally improving the traditional data-based assessment methodologies. With a look towards longer-term per-
spectives, the proposed methodology appears a promising candidate for emerging applications in artificial intelligence, such
as dimensionality reduction in tackling high-dimensional problems and managing big data, physics-based training of neural
networks, physics-informed machine learning to solve complex forward and inverse problems.
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APPENDIX

A INVERSE SPECTRAL EIGENPROBLEM: MASS MATRIX IDENTIFICATION

Independently of its completeness, the data K, M and the solutionΛ,Φ of the direct eigenproblem (Section 2.1, Eq. (1)) satisfies
the matrix relationship

KΦ = MΦΛ (A1)

which can be transposed to read
Φ⊤K⊤ = Λ⊤Φ⊤M⊤ (A2)

where the properties of transposition have been employed. Therefore, the symmetry properties K⊤ = K and M⊤ = M (by
hypothesis) and Λ⊤ = Λ (by construction) allows to rewrite

ΛΦ⊤M = Φ⊤K (A3)

which can be regarded, by inverting the role of data Λ,Φ and unknown K, M, as an inverse eigenproblem.
The inverse eigenproblem can be solved by recognizing that (A3) represents, for the unknown matrix M (Section 2.2), a

linear matrix equation of the form
AX = C (A4)

having made the positions A = ΛΦ⊤ ∈ RM×N ⊂ CM×N and C = Φ⊤K ∈ RM×N ⊂ CM×N. According to Theorems of Linear
Algebra54, the solution X exists and is Hermitian, that is X∗ = X, if and only if

CA∗ = CA⊤ is Hermitian (A5)

that is, by inverting the positions and replacing X with M, the unknown mass matrix M is Hermitian if and only if

Φ⊤K
(
ΛΦ⊤

)∗
= Φ⊤K

(
ΛΦ⊤

)⊤
being Λ ∈ RM×M,Φ ∈ RN×M

= Φ⊤KΦΛ⊤

= Φ⊤KΦΛ is Hermitian (A6)

which is certainly satisfied given the orthonormality of the eigenvectorsϕi with respect the stiffness matrix K, i.e.ϕ⊤
i Kϕj = δij.

If the condition (A5) is satisfied, the Hermitian solution of Eq. (A3) has general expression

X = A†C + C∗ (A†)∗ – A†AC∗ (A†)∗ + [
I – A†A

]
Z
[
I – A†A

]∗ (A7)

where I ∈ RN×N is the identity matrix and Z ∈ CN×N is an arbitrary Hermitian matrix. By inverting the positions and replacing
X with M, the solution (2) is achieved.

B TIMOSHENKO PLANE BEAM ELEMENT

The Timoshenko plane beam element adopted in this work (Section 3) is characterized by two end nodes and four nodal
displacements, collected in the column vector ue = (u1, θ1, u2, θ2). The stiffness matrix of the finite element is

Ke =
EI

ℓ3(1 + Ψ)


12 6ℓ –12 6ℓ

6ℓ ℓ2(4 + Ψ) –6ℓ ℓ2(2 – Ψ)

–12 –6ℓ 12 –6ℓ
6ℓ ℓ2(2 – Ψ) –6ℓ ℓ2(4 + Ψ)

 , Ψ =
12EI

GAsℓ2
(B8)

where E is the elastic Young modulus of the material, I is the second moment of the cross-section area, ℓ is the element length
and Ψ is an adimensional coefficient characterizing the beam shear slenderness – depending, among the others, on the shear
modulus G = E/(2(1 + ν)), where ν is the Poisson coefficient, and shear area As = κA = κbh, where κ is the Timoshenko



Analytical identification of dynamic structural models:mass matrix of an isospectral lumped mass model 21

coefficient. Such a matrix is optimal (i.e. nodally exact) for the static analysis of a prismatic beam member. For a rectangular
cross-section, I and κ take the well known expressions

I =
bh3

12
, κ =

10(1 + ν)

12 + 11ν
.

The mass matrix of the finite element is assumed to be diagonally lumped (Diagonal Lumped Mass Matrix, DLMM65,66)
with zero mass assigned to the rotational degrees of freedom. The matrix takes the form

Me = ρAℓ


1/2 0 0 0

0 0 0 0

0 0 1/2 0

0 0 0 0

 (B9)

which satisfies the conservation of linear momentum (but not angular momentum). This choice, often referred to as inconsistent,
makes Me a singular, symmetric positive semi-definite matrix.

C STATIC CONDENSATION

Due to the singular form of the element mass matrix Me (see Appendix B), the direct eigenproblem for matrix K ∈ RN×N with
respect to the matrix M ∈ RN×N (Section 2.1) degenerates, since the characteristic polynomial det(K – λM) is of degree less
than N and the problem can be said to have one or more infinite eigenvalues67.

The inverse eigenproblem (Section 2.2) is still solvable by considering an incomplete set of modes, i.e. neglecting those
modes with an infinite eigenvalue. This strategy, however, loosens the constraints of the matrix inversion and impacts negatively
on the identification procedure, reducing the accuracy of the identified mass matrix.

This issue can be overcome by taking advantage of the well-known static condensation technique, also known as the Iron-
Guyan’s reduction scheme68,69. The process involves the condensation of massless nodal displacements, the rotations θ in this
case, which are first expressed in terms of translations u and then omitted from the problem formulation. The quasi-static
condensation, other than reducing the model order, effectively removes the singularity of the mass matrix without altering its
inertial properties. The condensed eigensolution is, algorithmically, exact, with no approximation with respect to the original
one.

The eigenvalue problem (Section 2.1, Eq 1) is rearranged and partitioned as[
Kuu Kuθ

Kθu Kθθ

] [
Φu

Φθ

]
= λ

[
Muu O
O O

] [
Φu

Φθ

]
(C10)

Solving the lower sub-equation for Φθ we obtain

Φθ = –K–1
θθKθuΦu (C11)

and substituting in the upper one we obtain the so-called condensed form of the eigenproblem

KuΦu = λMuuΦu, Ku = Kuu – KuθK–1
θθKθu (C12)

whose solution provides a set of eigenvalues λi and associated eigentranslations Φui which correspond to the nondegenerate
eigenpairs of the original problem. Condensed eigenrotations Φθi can be directly recovered using Eq. (C11).


	Analytical identification of dynamic structural models: mass matrix of an isospectral lumped mass model
	Abstract
	Introduction
	Structural identification of the mass matrix
	Direct spectral problem: Modal Analysis
	Inverse spectral problem: Structural Identification
	Reduced-Order Model Identification

	Parametric analysis
	Parametrization
	Modal analysis
	Mass matrix identification

	Application to prototypical masonry structures
	Rigid nodes

	Conclusions
	Author contributions
	Acknowledgments
	Financial disclosure
	Conflict of interest
	REFERENCES
	APPENDIX
	Inverse spectral eigenproblem: mass matrix identification
	Timoshenko plane beam element
	Static condensation


