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Abstract

We consider one-step iterative algorithms to solve ill-posed inverse prob-
lems in the framework of variable exponent Lebesgue spaces Lp(·). These
unconventional spaces are particular (non-Hilbertian) Banach spaces
which can induce adaptive local regularization in the resolution of in-
verse problems. We first study gradient descent iteration schemes in
Banach spaces, where the classical Riesz theorem does not hold and,
consequently, primal and dual spaces are no longer isometrically isomor-
phic. In particular, we prove that gradient methods in Banach spaces
can be fully explained and understood in the context of proximal oper-
ator theory, with appropriate norm or Bregman distances as proximity
measure, which shows a deep connection between regularization itera-
tive schemes and convex optimization. We review the key concept of
duality map, and provide an explicit formula of the duality map for the
space Lp(·). Then we apply the Landweber and the Conjugate Gradi-
ent methods, extended to Banach setting, to solve deblurring imaging
problems in Lp(·) and propose an effective strategy to select the point-
wise variable exponent function p(·). Our numerical tests show the
advantages of considering variable exponent Lebesgue spaces w.r.t. both
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the standard L2 Hilbert and the constant exponent Lebesgue space
Lp, in terms of both reconstruction quality and convergence speed.

Keywords: Variable exponent Lebesgue spaces, iterative regularization,
proximal operators, adaptive regularization.

1 Introduction

Let us consider the functional linear equation

Ax = y (1)

where A : X −→ Y is a compact, hence linear and continuous, operator be-
tween two infinite-dimensional Banach spaces X and Y, with data y ∈ Y and
solution x ∈ X . It is well known that problem (1) is ill-posed and regular-
ization methods are required in order to mitigate the effects of noisy data in
the reconstruction. In the Hilbert space setting, the problem has been thor-
oughly studied and many methods have been established. One-step iterative
algorithms, such as Landweber or Conjugate Gradient methods, represent the
main class of regularization schemes for functional equations, see e.g. [1–3],
where the regularization parameter is just the number of iterations. We re-
call that an iterative method works as regularizer if an early-stopping strategy
prevents over-fitting of the noise in the reconstructions, according to the well-
known semi-convergence property [4]. This is often being referred to as implicit
regularization, since no penalty term has to be introduced but regularization
is achieved by performing a relatively small number of iterations

Solving problem (1) in Hilbert spaces has many computational advantages
but it can lead to over-smoothness of the solutions, bad reconstructions of
edges and sparse patterns, such as small objects or impulse signals [5, 6]. For
these reasons, in this paper we consider (1) in Banach space setting and in
particular in variable exponent Lebesgue spaces Lp(·). The latter are Lebesgue
spaces defined in terms of a point-wise variable exponent p(·) and they are
intrinsically endowed with useful space-variant properties. Hence, we propose
to solve ill-posed inverse problems in Lp(·) to take advantage of the natural
adaptivity of these spaces. A suitable variable exponent induces indeed an
adaptive regularization in the reconstruction, having the possibility to enforce
sparsity and preserve edges in certain parts of the domain, as when considering
a constant exponent Lp space with 1 < p < 2 [6], and enforcing high level of
regularity in other smooth parts, as in a classical Hilbertian L2 setting.

In particular, we propose to combine variable exponent Lebesgue space
setting with one-step minimization iterative strategies, which heavily depend
on the definition of a gradient descent step, as we will discuss in Section 2. From
this standpoint, we first study the generalization of the Landweber algorithm,
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which for Hilbert spaces X ,Y and initial guess x0 ∈ X , reads as follows

xk+1 = xk − αA∗(Axk − y) ,

to the Banach space setting, where it becomes

x∗
k+1 = x∗

k − αkA
∗JY

p (Axk − y) ∈ X ∗, xk+1 = JX∗

r∗ (x∗
k+1) ∈ X .

Here x∗
0 = JX

r (x0) ∈ X ∗, and JX
r , JY

p , JX∗

r∗ represent the so-called duality
mappings, needed to correctly move from primal to dual spaces and vice-versa
[7]. We analyze such an algorithm from a different point of view, making a
link between regularization theory and convex optimization. Specifically, we
read such an iterative algorithm in the context of proximal methods, defined
in terms of a specific functional and an appropriate Bregman distance. At
the best of our knowledge, this is a novel reinterpretation which allows a full
understanding of the role of the geometrical properties of both X and Y spaces.

In Section 3, basic properties and main definitions of Lp(·) spaces are first
recalled, both in the continuous and in the discrete setting. Later on, we dis-
cuss the relationship between primal and dual spaces and then the analytical
expression of the duality mapping of Lp(·) is given and analytically proved.

Finally, in Section 4 we consider as application the resolution of exem-
plar signal and image deblurring problems in Lp(·). We consider both the
Landweber and the Conjugate Gradient dual methods and compare their per-
formances with standard Hilbert reconstruction strategies. Variable exponent
Lebesgue spaces yields better restorations with both algorithms, expecially in
reconstructing edges, thin details and uniform background.

2 Iterative regularization dual methods in
Banach spaces

In the following, we analyse one-step iterative regularization algorithms in
Banach spaces. In particular, we consider the Landweber dual method [7] by
both the regularization theory point of view and the convex optimization one.

2.1 The (classic) Hilbertian approach

Before introducing iterative regularization methods in Banach spaces, for the
sake of simplicity we briefly start dealing with the basic Hilbertian case, that is,
X and Y are now Hilbert spaces. By virtue of the Riesz isomorphism Theorem,
that allows to consider the adjoint operator A∗ : Y∗ −→ X ∗ simply as A∗ :
Y −→ X up to the canonical isometric isomorphisms, the simplest iterative
regularization in Hilbert spaces is the Landweber algorithm

x0 ∈ X , xk+1 = xk − αA∗(Axk − y) , (2)
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where α ∈ (0, 2/∥A∥2) is a fixed step length, which always guarantees conver-
gence for noiseless data [7]. By considering the normal equation A∗Ax = A∗y,
the algorithm can be interpreted as a fixed point method for the operator
G(x) = x − α(A∗Ax − A∗y) , as well as a gradient descent method for the
minimization of the least square residual functional f : X −→ R defined as

f(x) =
1

2
∥Ax− y∥2Y . (3)

Indeed, since f is convex and differentiable, with ∇f(xk) = A∗(Axk − y) ∈ X ,
iteration (2) is the one-step descent method

xk+1 = xk − α∇f(xk). (4)

The last equation can be equivalently written as

xk+1 = arg min
x∈X

1

2
∥x−

(
xk − α∇f(xk)

)
∥2X (5)

= arg min
x∈X

{1
2
∥x− xk∥2X + α⟨∇f(xk), x⟩

}
,

where ⟨·, ·⟩ denotes the scalar product of X . It is quite evident that the latter
minimization problem is well defined, since the argument is coercive, being the
sum of a quadratic functional and a linear one. Hence, since the two addenda
are convex and differentiable,

∇
(1
2
∥ · −xk∥2X + α⟨∇f(xk), ·⟩

)
(xk+1) = 0 .

It is interesting to notice that the minimization problem (5) can be recasted
in the framework of the theory of proximal operators [8]. For a fixed x′ ∈ X and
a continuously differentiable functional g, if we define the proximal operator
prox∇g : X −→ X as

prox
∇g

(x′) = arg min
x∈X

(
1

2
∥x− x′∥2X + ⟨∇g(x′), x⟩

)
, (6)

then the one-step gradient iteration (2) can be compactly written as

xk+1 = prox
α∇f

(xk) ,

by virtue of (4) and (5). This heuristically shows that iteration (2) corresponds
to the computation of a point which decreases ⟨∇f(xk), x⟩ and simultaneously
is close (i.e., proximal) to the previous iteration. The step size α can be here
thought as the weight which balances between the two terms 1

2∥x− xk∥2X and
⟨∇f(xk), x⟩.
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2.2 The dual method in Banach spaces

In [7], a generalization of the Landweber method to non-Hilbertian Banach
spaces had been first proposed. Such a generalization is not straightforward,
because a Banach space is not necessarily isomorphous to its dual, so that the
iteration formula (5) is not even formally consistent, being xk ∈ X summed to
∇f(xk) ∈ X ∗ ̸= X [9]. The key tool for the generalization to Banach spaces
is the duality map, which associates an element of a Banach space U with an
element of its dual U∗. About that, we introduce its simplest formulation.

Definition 1 (Duality map) Let U be a Banach space and p > 1 a fixed constant.
Given the convex functional hp(u) =

1
p∥u∥

p
U , where u ∈ U , its subdifferential ∂hp :

U −→ 2U
∗
is a multi-valued operator called duality map with gauge function t 7→

tp−1, denoted as

JU
p = ∂hp = ∂

(1
p
∥ · ∥pU

)
.

The previous definition is based on the Asplund Theorem [6]. By direct
computation, it holds

JU
p (u) = {u∗ ∈ U∗ : ⟨u∗, u⟩ = ∥u∥U∥u∗∥U∗ , ∥u∗∥U∗ = ∥u∥p−1

U } , ∀u ∈ U ,

where now ⟨u∗, u⟩ = ⟨u, u∗⟩ = u∗(u) ∈ R denotes the duality pair in Banach
spaces. The latter equality can be equivalently considered as definition of du-
ality map JU

p [10]. We notice that ⟨u∗, u⟩ = ∥u∥p for any u∗ ∈ JU
p (u), which

is formally similar to the equality ⟨h, h⟩ = ∥h∥2 of any Hilbert space, where
J2(h) = h.

Duality maps satisfy important properties [10]. We just recall that, being
the subdifferential of a convex functional, JU

p is a monotone operator, that is

⟨JU
p (u) − JU

p (u′), u − u′⟩ ≥ 0, and it be can proven that JU
p (−u) = −JU

p (u)

and JU
p (λu) = λp−1JU

p (u) for λ ≥ 0.
In this work, we focus our attention on Banach spaces with single valued

duality maps, in order to obtain easy readability. To this aim, we recall that
a Banach space U is:

i) smooth if, for every u ̸= 0, there exists an unique x∗ ∈ U∗ such that ∥u∗∥ = 1
and ⟨u∗, u⟩ = ∥u∥;

ii) strictly convex if ∥βu1 + (1 − β)u2∥ < 1, for all β ∈ (0, 1) and u1, u2 ∈ U ,
with u1 ̸= u2 and ∥u1∥ = ∥u2∥ = 1, that is, the boundary of the unit ball
contains no line segment.

If (and only if) the Banach space U is smooth, then the duality map JU
p

is single valued. Moreover, if U is also reflexive and strictly convex then U∗ is
smooth and JU

p is invertible [7]. Its inverse map is given by

(JU
p )−1 = JU∗

p∗ , (7)
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where JU∗

p∗ is the duality map of the dual space U∗ with gauge function

t 7→ tp
∗−1, being p∗ the Hölder conjugate of p, that is 1

p + 1
p∗ = 1. We high-

light that in (and only in) any Hilbert space H, for p = 2 the duality map
reduces to the identity operator, up to canonical isometric isomorphisms, so
that JH

2 (x) = ∂(∥ · ∥2H/2)(x) = x.

On these grounds, for fixed parameters p, r > 1, the Landweber iteration
scheme of the seminal paper [7] for the solution of (1) in smooth, reflexive and
strictly convex Banach spaces X and Y reads as in Algorithm 1, where x0 ∈ X

Algorithm 1 Landweber (dual) method in Banach spaces

Parameters: p, r > 1, {αk}k such that αk > 0.
Initialization: Start with x0 ∈ X , x∗

0 = JX
r (x0) ∈ X ∗.

FOR k = 0, 1, . . . REPEAT

x∗
k+1 = x∗

k − αkA
∗JY

p (Axk − y) , (8)

xk+1 = JX∗

r∗ (x∗
k+1) .

is the initial guess (the null vector x0 = 0 ∈ X can be used), αk > 0 is a proper
variable step length and r∗ is the Hölder conjugate of r.

By analogy, we notice that the descent step of the Hilbertian scheme (2) is
now performed in the dual space X ∗, since both x∗

k and A∗JY
p (Axk − y) of (8)

belong to X ∗. Hence, this algorithm will be referred to as dual method.
The dual method (8) has been introduced by a pure formal approach. Any-

way, its relation with gradient methods is evident, as sketched in [6]. Indeed,
by simple application of the chain rule for (sub-)differentiation of the p-power
residual

f(x) =
1

p
∥Ax− y∥pY , (9)

we have

∂f(x) =

((
∂
(1
p
∥ · ∥pY

)
|Ax−y

)∗
∂(Ax− y)

)∗

(10)

=
((

JY
p (Ax− y)

)∗
A
)∗

= A∗JY
p (Ax− y) ,

where the superscript star denotes the adjunction of linear operators. This
shows that iterative step (8) can be written as

x∗
k+1 = x∗

k − αk∂f(xk) ,

which is computed in the dual space X ∗, with a strong analogy with the
iterative step (4) of Hilbert setting, though computed in the primal space X
in that case.
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On the contrary, the role of the duality maps JX
r and JX∗

r∗ of Algorithm
1, related to the “geometry” induced by the norms of the Banach space X
and its dual X ∗, is not evident, because both duality maps do not appear in
the sub-differential (10) of the residual functional (9). Hence, we just aim at
giving here a simple explanation of the whole Landweber iteration scheme (8)
in Banach spaces, that is, involving the duality maps JX

r and JX∗

r∗ too. Our
approach of the following sections, although formally consistent, allows us an
heuristic rationale which has never been explicitly introduced before.

2.3 The dual method as Bregman-proximal iterative
minimization

As first study, by considering the functional (9) and its subdifferential (10) in
smooth, reflexive and strictly convex Banach spaces, inspired by (5) we write

xk+1 = arg min
x∈X

{1
r
∥x− xk∥rX + αk⟨∂f(xk), x⟩

}
, (11)

which leads to

∂
(1
r
∥ · −xk∥rX + αk⟨∂f(xk), ·⟩

)
(xk+1) = 0 ,

that is, to the iterative gradient method

JX
r (xk+1 − xk) + αk∂f(xk) = 0 ,

where the Definition 1 of duality map has been applied to 1
r∥ · ∥

r
X . The latter

can be solved explicitly in our hypotheses, since (JX
r )−1 = JX∗

r∗ , leading to

xk+1 = xk − α̃kJ
X∗

r∗ (∂f(xk)),

where α̃k = αr∗−1
k , that is, by (10)

xk+1 = xk − α̃kJ
X∗

r∗ (A∗JY
p (Axk − y)) . (12)

This iteration generalizes the so called primal method of [6, Section 5.3.1],
(there p = r). The primal method (12) solves the minimization problem (11)
in Banach spaces for the p-power residual functional (9), as well as (2) solves
the minimization problem (5) in Hilbert spaces for the square residual func-
tional (3). However, since (12) and (8) are different, we understand that the
direct extension to Banach space of the procedure for the solution of the min-
imization problem (5) in Hilbert space does not give rise to what is known as
the Landweber method in Banach space, that is, the dual method (8).

The correct generalization requires indeed a different way to measure dis-
tances. It is known that, in Banach spaces, Bregman distances are more
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appropriate than norm distances, since Bregman distance inherits the rich ge-
ometrical properties of the involved Banach space [11]. Bregman distances are
widely used to measure the distance between Ax and y instead of norm func-
tional such as ∥Ax − y∥p, as well as the distance between the k-th iteration
and the generalized solution in many proofs of convergence. Generally, the
Bregman distance associated to a convex functional is defined as the difference
between the functional and its linear approximation as follows [12].

Definition 2 (Bregman distance) Let g : U −→ R be a convex and continuously-
differentiable functional on a Banach space U . The Bregman distance BU

g (·, u) : U −→
[0,+∞) of g at u ∈ U is defined as

BU
g (u′, u) = g(u′)−

(
g(u) + ⟨∂g(u), u′ − u⟩

)
, ∀u′ ∈ U .

For g(·) = 1
r∥ · ∥r, with r > 1, the Bregman distance will be denoted as

BU
r . Since ∂g = JU

r , it becomes

BU
r (u

′, u) =
1

r
∥u′∥r − 1

r
∥u∥r − ⟨JU

r (u), u′ − u⟩, (13)

If the Banach space is a Hilbertian one H, then BH
2 (u′, u) = 1

2∥u
′ − u∥2.

However, in general Bregman distance and conventional norm distances 1
r∥u

′−
u∥r are different, since Bregman distance does not satisfy symmetry nor the
triangle inequality. Some basic results about Bregman distance in a uniformly
smooth and uniformly convex Banach space U can be found in [6], and [7,
Theorem 2.12]. We remind here just a few ones.
(i) BU

r (u
′, u) ≥ 0, and BU

r (u
′, u) = 0 if and only if u = u′;

(ii) BU
r is continuous in both the arguments;

(iii) BU
r (u

′, u) can be written as BU
r (u

′, u) = 1
r∥u

′∥r + 1
r∗ ∥u∥

r − ⟨JU
r (u), u′⟩ ,

since ⟨JU
r (u), u⟩ = ∥u∥r;

(iiv) the following three statements are equivalent
(a) limn−→+∞ ∥un − u∥ = 0,
(b) limn−→+∞ ∥un∥ = ∥u∥ and limn−→+∞⟨JU

r (un), u
′⟩ = ⟨JU

r (u), u′⟩,
for any u′ ∈ U ,

(c) limn−→+∞ BU
r (u, un) = 0.

In this regard, by using the Bregman distance BX
r instead of the norm

distance 1
r∥ · ∥

r
X in (11), we can write

xk+1 = arg min
x∈X

{
BX

r (x, xk) + αk⟨∂f(xk), x⟩
}

= arg min
x∈X

{1
r
∥x∥rX +

1

r∗
∥xk∥rX −

〈
JX
r (xk) , x

〉
+ αk ⟨∂f(xk), x⟩

}
,
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which is again convex, differentiable end coercive, so that

∂
(1
r
∥ · ∥rX +

1

r∗
∥xk∥rX −

〈
JX
r (xk), ·

〉
+ αk ⟨∂f(xk), ·⟩

)
(xk+1) = 0 .

Formally, the latter equality leads to the following iterative gradient-type
iteration

JX
r (xk+1)− JX

r (xk) + αk∂f(xk) = 0 ,

which can be written as

xk+1 = JX∗

r∗

(
JX
r (xk)− αk∂f(xk)

)
.

We notice that this is exactly the Landweber dual method in Banach space (8)
for the minimization of the p-power residual functional (9), since the subdiffer-
ential of f is the single element (10) and x∗

k = JX
r (xk). Thus, we have proven

the following proposition, which gives a comprehensive understanding of (8).

Proposition 1 Let X and Y be two smooth, reflexive and uniformly convex Banach
spaces. Then, for p, r > 1, the Landweber iterative step (8) in Banach spaces, defined
in [7],

xk+1 = JX∗

r∗

(
x∗k − αkA

∗JY
p (Axk − y)

)
,

for the iterative solution of the ill-posed linear equation Ax = y as in (1) , corresponds
to the solution of the following minimization problem

xk+1 = arg min
x∈X

{
BX
r (x, xk) + αk⟨∂f(xk), x⟩

}
where f : X −→ R is the functional f(x) = 1

p∥Ax − y∥pY and BX
r denotes the

Bregman distance (13) of X .

Based on the rationale of (6), Proposition 1 allows us to write the Landwe-
ber iterative step in Banach spaces, that is (8), as solution of a proximal

problem. More precisely, by defining the Bregman-proximal operator prox
BX

r

∂f :
X −→ X as

BX
r

prox
∂g

(x′) = arg min
x∈X

(
BX

r (x, x′) + ⟨∂g(x′), x⟩
)
,

the basic iteration (8) reduces to

xk+1 =
BX

r
prox
αk∂f

(xk) ,
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which gives another useful interpretation of the dual algorithm in the context
of convex optimization.

In the following sections, the dual algorithm (8) will be applied to un-
conventional Banach spaces, namely the variable exponent Lebesgue spaces.
Before going on, we report here the properties of the (conventional, i.e. constant
exponent) Lebesgue spaces Lp(Ω), with Ω ⊆ Rd measurable. For 1 < p < +∞,
Lp(Ω) is a smooth, reflexive and strictly convex Banach space (more deeply,
uniformly smooth and uniformly convex too [7]). Hence the duality map
JLp

s : Lp(Ω) −→ (Lp(Ω))∗ of Definition 1 is single valued, and it holds

⟨JLp

s (u), v⟩ =
∫
Ω

∥u∥s−p
p |u(t)|p−1 sign(u(t)) v(t) dµ(t) , ∀u, v ∈ Lp(Ω) ,

where µ(t) denotes the Lebesgue measure in Rd. By virtue of the isometric
isomorphism between (Lp(Ω))∗ and Lp∗

(Ω), we simply write

JLp

s (u) = ∥u∥s−p
p |u|p−1 sign(u) , (14)

so that JLp

s (u) ∈ Lp∗
(Ω) for any u ∈ Lp(Ω), up to the canonical isometric

isomorphisms.

The discrete analogue of Lp(Ω) Lebesgue spaces are the p-summable se-
quence spaces lp. For the real sequence (xn)n∈N ∈ lp, where xn ∈ R ∀n, we
denote the norm as ∥x∥p = p

√∑
n∈N |xn|p. The duality map of x ∈ lp with the

gauge function t 7→ ts−1 is denoted as Jp
s (x). By means of the corresponding

isometric isomorphisms between (lp)∗ and lp
∗
, Jp

s (x) is the real sequence

Jp
s (x) =

(
∥x∥s−p

p |xn|p−1 sign(xn)
)
n∈N

∈ lp
∗
, (15)

with a straightforward analogy with the continuous case (14) of Lp(Ω) [6].

3 The variable exponent Lebesgue spaces
setting

Definitions, key concepts and fundamental properties of variable exponent
Lebesgue spaces Lp(·)(Ω) will be now reported (for a thorough dissertation
about these spaces, see [13, 14]). Then, an explicit formulation of their duality
maps is given, and the descent regularization algorithms in these spaces will
be shown at the end of the section.

Let Ω ⊆ Rd, with d ∈ N, d ≥ 1, be a Lebesgue measurable subset with
positive measure and let p(·) : Ω −→ [1,+∞] be a Lebesgue measurable
function. The variable exponent Lebesgue space Lp(·)(Ω) is defined in terms
of the function p(·), which represents the exponent function. These spaces
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can be used as solution spaces for ill-posed inverse problems, since they in-
duce a spatially adaptive regularization thanks to their intrinsic space-variant
geometrical properties.

3.1 Definition of Luxemburg norm

We define the set of all possible variable exponents as

P(Ω) := {p(·) : Ω −→ [1,+∞] | p(·) is Lebesgue measurable} .

Given an exponent function p(·) ∈ P(Ω), the essential infimum and essen-
tial supremum of p(·) are two quantities which play an important role in the
properties of the space Lp(·)(Ω) itself and are here denoted by

p− := ess inf
u∈Ω

p(u) and p+ := ess sup
u∈Ω

p(u).

In the following, for the sake of simplicity we only consider exponents p(·) with
1 < p− ≤ p+ < +∞. For the general case, see e.g. [13].

In classical Lp(Ω) spaces with a constant exponent p ∈ (1,+∞), for any
Lebesgue measurable function x : Ω −→ R ∪ {+∞}, its norm is ∥x∥p =( ∫

Ω
|x(t)|pdt

)1/p
and consequently the space is defined as the set of functions

with finite p-norm: x ∈ Lp(Ω) ⇐⇒ ∥x∥p < +∞. However, when considering
a point-wise variable exponent p(·), the definition of the norm is not straight-
forward. Indeed, comparing to the above classical definition, it is possible to
compute the quantity

∫
Ω
|x(t)|p(t)dt even with a variable exponent, but it is

not clear which specific value of p(·) should be used to compute its radical.
Hence, in order to characterise a norm in Lp(·)(Ω) spaces, it is necessary to
first introduce the so-called modulars.

Definition 3 Let F(Ω) be the set of all Lebesgue measurable functions x : Ω −→
R∪{+∞}. Given p(·) ∈ P(Ω) with p+ < +∞, the function ρp(·) : F(Ω) −→ [0,+∞]
defined by

ρp(·)(x) =

∫
Ω
|x(t)|p(t)dt

is called modular associated to the exponent function p(·).

The modular ρp(·)(x) can be seen as the generalization of the p-power of
the norm ∥x∥pp in Lp(Ω) with constant exponent p ∈ (1,+∞). We can now

characterise the space Lp(·)(Ω) and give a definition of its norm.

Definition 4 The space Lp(·)(Ω) is the set of functions x ∈ F(Ω) such that

ρp(·)

(x

λ

)
≤ 1,
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for some λ > 0. For any x ∈ Lp(·)(Ω), we define ∥ · ∥Lp(·)(Ω) : L
p(·)(Ω) −→ R as

∥x∥Lp(·)(Ω) := inf
{
λ > 0 : ρp(·)

(x

λ

)
≤ 1

}
. (16)

Theorem 2 [13] The function ∥ · ∥Lp(·)(Ω) defined in (16) is a norm on Lp(·)(Ω)

and the space
(
Lp(·)(Ω), ∥ · ∥Lp(·)(Ω)

)
is a Banach space.

The norm defined in (16) is often referred to as Luxemburg norm and it
can be extended to the comprehensive framework of Orlicz spaces [13] with
an analogue definition. It can be considered a general definition of norm, that
is, the norm is the (smallest) scaling factor which normalizes the modular. To
simplify the notation, we often will write ∥ · ∥Lp(·) in the place of ∥ · ∥Lp(·)(Ω).

We can now observe that when p(·) ≡ p ∈ (1,+∞) is constant, the classical
notion of norm ∥x∥p in Lp(Ω) can be easily retrieved:

ρp(·)

(x
λ

)
= ρp

(x
λ

)
=

1

λp
ρp(t) =

1

λp
∥x∥pp

so that the infimum in (16) is equal to ∥x∥p. We remark that the computation
of the p-radical of the integral is necessary to ensure the homogeneity property
∥βx∥p = |β|∥x∥p, for any β ∈ C. With a variable exponent, such computation
is obviously not possible and in turn the 1-d minimization problem (16) has
to be solved. However, the quantity (16) can be bounded by both the p− and
p+ radicals of the modular. At a certain extent, we can consider the norm as
a specific p̃-radical (which depends on x) of the modular with p− ≤ p̃ ≤ p+,
as stated by the following Proposition.

Proposition 2.1 [13, Lemma 3.2.5][15, Th. 1] Let p(·) ∈ P(Ω) with p+ < +∞.

(i) If x ̸= 0, then ∥x∥Lp(·) = β if and only if ρp(·)(x/β) = 1.

(ii) ∥x∥Lp(·) < 1 (= 1, > 1) if and only if ρp(·)(x) < 1 (= 1, > 1).

(iii) If ∥x∥Lp(·) > 1, then ρp(·)(x)
1/p+ ≤ ∥x∥Lp(·) ≤ ρp(·)(x)

1/p− .

(iv) If 0 < ∥x∥Lp(·) ≤ 1, then ρp(·)(x)
1/p− ≤ ∥x∥Lp(·) ≤ ρp(·)(x)

1/p+ .

An important consequence is that, when the essential infimum of p(·) is
finite, p+ < +∞, then there holds that: ρp(·)(x) < +∞ ⇐⇒ ∥x∥Lp(·) <
+∞. This equivalence is obvious in Lp spaces, but it does not always hold
true in general Lp(·) spaces. A classical example is the following: consider
Ω = [1,+∞), x(t) = 1 and p(t) = t, ∀t ∈ Ω, hence p+ = +∞. Then, by

Definition 3, ρp(·)(x) =
∫ +∞
1

1t dt =
∫ +∞
1

1 dt = +∞, but for all λ > 1 there

holds ρp(·)
(
x
λ

)
=
∫ +∞
1

1
λt dt = 1

λ log(λ) < +∞, so that by Definition 4 and

Theorem 2, the norm is finite, i.e., ∥x∥Lp(·) < +∞ (in particular, by numerical
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computation, ∥x∥Lp(·) ≈ 1.763). In Lp(·) spaces, modular and norm are thus
truly different objects. Finally, we collect now some useful properties.

Theorem 3 [13, Theorem 3.4.7, Theorem 3.4.9][15, Lemma 1] Given p(·) ∈ P(Ω)

such that 1 < p− ≤ p+ < +∞, then Lp(·)(Ω) is a smooth, uniformly convex, hence
reflexive, Banach space.

Proposition 3.1 [16] Given p(·) ∈ P(Ω) and q(·) ∈ P(Ω), with p+ < +∞ and
q+ < +∞, then the following natural immersion holds

Lq(·)(Ω) ↪→ Lp(·)(Ω)

if and only if
p(t) ≤ q(t) a.e. in Ω.

3.2 Dual space and duality mappings

Sections 2.2 and 2.3 highlighted the key concepts of dual space and duality
mapping in the development of gradient descent iteration schemes in Banach
spaces. Given a Banach space U , to define the Landweber dual method of
Algorithm 1, it is necessary to have an explicit expression of both the duality

mapping JU
r : U −→ U∗ and its inverse

(
JU
r

)−1
: U∗ −→ U . Recall that for any

Banach space U , the inverse of JU
r is given by

(
JU
r

)−1
= JU∗

r∗ . In particular, in
conventional fixed exponent Lp(Ω) spaces, the isometric isomorphism between

the space
(
Lp(Ω)

)∗
and Lp∗

(Ω) leads to

(
JLp

r

)−1

= J
(Lp)∗

r∗ = JLp∗

r∗ ,

so that we have an analytical expression of the inverse duality map just by
using (14) or (15).

In this subsection, we define the dual space and the duality mapping of
Lp(·)(Ω), and show that, differing from the constant exponent case, an isomor-
phism between (Lp(·)(Ω))∗ and Lp∗(·)(Ω) does not hold true in general. For a
comprehensive review of these arguments, we refer again to [13].

Definition 5 Let G : Lp(·)(Ω) −→ R be a linear functional. G is bounded if

sup
{
|G(u)| : u ∈ Lp(·)(Ω), ∥u∥Lp(·) ≤ 1

}
< +∞.

The dual space of Lp(·)(Ω) is the set

(Lp(·)(Ω))∗ = {G : Lp(·)(Ω) −→ R : G is linear and bounded} ,

which is a Banach space with the previous finite supremum as norm ∥G∥(Lp(·)(Ω))∗ .
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For 1 < p− ≤ p+ < +∞, the Hölder conjugate of p(·) is a Lebesgue
measurable function p∗(·) ∈ P(Ω) such that

1

p(t)
+

1

p∗(t)
= 1 a.e. in Ω.

With a strong formal analogy to the constant exponent case, for any z ∈
Lp∗(·)(Ω), there exists a unique G ∈ (Lp(·)(Ω))∗ such that

G(u) =

∫
Ω

z(t)u(t)dt ∀ u ∈ Lp(·)(Ω).

Thus, we can denote unambiguously G as Gz.

Definition 6 [13, Definition 2.7.1] The associate space of Lp(·)(Ω), denoted by

A(Lp∗(·)(Ω)), is the space of functions z ∈ Lp∗(·)(Ω) such that

sup

{∫
Ω
|z(t)||u(t)|dt : u ∈ Lp(·)(Ω), ∥u∥Lp(·) ≤ 1

}
< +∞. (17)

The function ∥ · ∥′p∗(·) : A(Lp∗(·)(Ω)) −→ R defined by

∥z∥′p∗(·) := sup

{∫
Ω
|z(t)||u(t)|dt : u ∈ Lp(·)(Ω), ∥u∥Lp(·) ≤ 1

}
is a norm on A(Lp∗(·)(Ω)).

First of all, observe that A(Lp∗(·)(Ω)) might happen to be a proper subset
of Lp∗(·)(Ω). Moreover, since

∥Gz∥(Lp(·)(Ω))∗ = sup
{
|Gz(u)| : u ∈ Lp(·)(Ω), ∥u∥Lp(·) ≤ 1

}
=

= sup

{∫
Ω

|z(t)||u(t)|dt : u ∈ Lp(·)(Ω), ∥u∥Lp(·) ≤ 1

}
,

(18)

(17) is equivalent to requiring that the linear operator Gz is bounded. In this
case the two norms of z ∈ A(Lp∗(·)(Ω)) and Gz ∈ Lp∗(·)(Ω) are the same. Thus,
there exists an isometric embedding A(Lp∗(·)(Ω)) ↪→ (Lp(·)(Ω))∗ between the
associate space and the dual space of Lp(·)(Ω). However, as shown by the
following Proposition combined with (18), Lp∗(·)(Ω) and (Lp(·)(Ω))∗ are not
isometrically isomorphic.

Proposition 3.2 [13, Corollary 3.2.14] For all z ∈ A(Lp∗(·)(Ω)), there holds

1

2
∥z∥Lp∗(·) ≤ ∥z∥′p∗(·) ≤ 2∥z∥Lp∗(·) ,

and the bounds are optimal.
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For any x ̸= 0, in [15, 17] the authors proved that ∥ · ∥Lp(·) is Gateaux-
differentiable for 1 < p− ≤ p+ < +∞ (hence the space (Lp(·)(Ω), ∥ · ∥Lp(·)) is
smooth), and in [18, 19] that it is also Fréchet differentiable. From these results,
following similar arguments, we explicitly derive an analytical expression for

the duality mapping JLp(·)

s of Lp(·)(Ω) spaces.

Theorem 4 Let the exponent function p(·) ∈ P(Ω) be such that 1 < p− ≤ p+ <

+∞. Then, for each x ∈ Lp(·)(Ω) and for any s ∈ (1,+∞), the duality mapping

JLp(·)
s : Lp(·)(Ω) −→ (Lp(·)(Ω))∗ is the linear operator such that

⟨JLp(·)

s (x), h⟩ = 1∫
Ω

p(t)|x(t)|p(t)

∥x∥p(t)

Lp(·)
dt

∫
Ω

p(t) sign
(
x(t)

)
|x(t)|p(t)−1

∥x∥p(t)−s

Lp(·)

h(t)dt, (19)

for any h ∈ Lp(·)(Ω).

Proof By Definition 1, we know that JLp(·)
s = ∂

(
1
s∥ · ∥

s
Lp(·)

)
. Taking into account

the smoothness of (Lp(·)(Ω), ∥ · ∥Lp(·)), in the following of the proof we will focus on

the computation of the Gâteaux derivative the functional x ∈ Lp(·)(Ω) 7−→ ∥x∥sLp(·)

(without the fixed scaling factor 1
s for simplicity), for any x0 ∈ Lp(·)(Ω).

We now first consider x0 ̸= 0. We have to prove that, for any possible direction
h ∈ Lp(·)(Ω), the real function σ 7→ ∥x0 + σh∥sLp(·) , with σ ∈ R, is differentiable at
σ = 0. We will use the implicit function theorem as follows.

Let k > 1 be a fixed real number, D = (−1, 1) ×
(
1
k ∥x0∥sLp(·) , k ∥x0∥sLp(·)

)
and

consider the function ϕ : D → R defined by means of the convex modular function
ρp(·) which characterizes the Luxemburg norm (16)

ϕ(σ, λ) = ρp(·)

(
x0 + σh

λ1/s

)
− 1 =

∫
Ω

|x0(t) + σh(t)|p(t)

λp(t)/s
dt− 1. (20)

In the sequel, we will demonstrate the following statements, which are the hypothesis
of the implicit function Theorem:

i) ϕ ∈ C1(D);
ii) ϕ (0, ∥x0∥sLp(·)) = 0;

iii) ∂ϕ
∂λ (0, ∥x0∥sLp(·)) < 0.

Indeed, once proven i), ii) and iii), the implicit function Theorem guarantees that
there exist neighbourhoods U of 0 and V of ∥x0∥sLp(·) such that U × V ⊂ D and a

unique C1-mapping λ : U → V which satisfies λ(0) = ∥x0∥sLp(·) , ϕ(σ, λ(σ)) = 0 for
any σ ∈ U , and

λ′(σ) = −
∂ϕ
∂σ (σ, λ(σ))
∂ϕ
∂λ (σ, λ(σ))

, ∀σ ∈ U . (21)

The equality ϕ(σ, λ(σ)) = 0 ∀σ ∈ U , rewritten as

ρp(·)

(
x0 + σh

λ(σ)1/s

)
= 1, ∀σ ∈ U ,
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together with Definition 4 of the norm in Lp(·)(Ω), allows us to derive that

λ(σ) = ∥x0 + σh∥sLp(·) , ∀σ ∈ U. (22)

Hence, from (21) and (22) we have that λ′(0) exists and

λ′(0) = lim
σ→0

∥x0 + σh∥sLp(·) − ∥x0∥sLp(·)

σ
= −

∂ϕ
∂σ

(
0, ∥x0∥sLp(·)

)
∂ϕ
∂λ

(
0, ∥x0∥sLp(·)

) . (23)

The functional ∥ · ∥sLp(·) is thus Gâteaux differentiable at x0 ̸= 0, and the explicit
computation of the ratio (23) will provide expressions (19) too.

We can now prove the statements i), ii) and iii).

i) To prove that ϕ ∈ C1(D), let us consider the integrand f : Ω ×D → R of
(20)

f(t; (σ, λ)) =
|x0(t) + σh(t)|p(t)

λp(t)/s
, t ∈ Ω, (σ, λ) ∈ D. (24)

It is easy to show that, for any fixed (σ, λ) ∈ D, the map t 7→ f(t; (σ, λ))
is integrable in Ω. Indeed, by definition of D, there hold |σ| < 1 and λ ≥
1
k ∥x0∥sLp(·) = λmin > 0, which yields to

|x0(t) + σh(t)|p(t)

λp(t)/s
≤ kp(t)/s(|x0(t)|+ |h(t)|)p(t)

∥x0∥p(t)Lp(·)

≤ kp+/s

c
(|x0(t)|+ |h(t)|)p(t)

with c = min
(
∥x0∥p−

Lp(·) , ∥x0∥p+

Lp(·)

)
and (|x0(t)|+ |h(t)|)p(t) being integrable

since x0, h ∈ Lp(·)(Ω) and p+ < +∞. Consequently, the function ϕ of (20)
is well-defined.
We now show that for a.e. t ∈ Ω, the map (σ, λ) 7→ f(t; (σ, λ)), with
(σ, λ) ∈ D, is a C1-mapping. By formal computation, the partial derivatives
of (24) are

∂f

∂σ
(t; (σ, λ)) =

p(t) |x0(t) + σh(t)|p(t)−1 sign (x0(t) + σh(t)) h(t)

λp(t)/s
, (25)

∂f

∂λ
(t; (σ, λ)) = −p(t) |x0(t) + σh(t)|p(t)

sλp(t)/s+1
, ∀(σ, λ) ∈ D. (26)

Since p− > 1 and λ > 0, it is evident from (25) and (26), that (σ, λ) 7→
∂f
∂σ (t; (σ, λ)) and (σ, λ) 7→ ∂f

∂λ (t; (σ, λ)) are continuous mappings in D. Any-
way, to explicitly compute both the numerator and the denominator of (21),
that is, the partial derivatives of (20), we need to commute differentiation
and integration operators. To this aim, we apply the Dominated Conver-
gence Theorem, by searching for a function g : Ω −→ R, integrable on Ω,
such that ∣∣∣∣∂f∂σ (t; (σ, λ))

∣∣∣∣ ≤ g(t),

∣∣∣∣∂f∂λ (t; (σ, λ))
∣∣∣∣ ≤ g(t).
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Similarly as before for the estimation of |f(t; (σ, λ))|, (σ, λ) ∈ D implies that∣∣∣∣∂f∂σ (t; (σ, λ))
∣∣∣∣ ≤ kp(t)/sp(t) (|x0(t)|+ |h(t)|)p(t)

∥x0∥p(t)Lp(·)

≤ p+ · kp+/s

c
(|x0(t)|+ |h(t)|)p(t) ,

with c = min
(
∥x0∥p−

Lp(·) , ∥x0∥p+

Lp(·)

)
, and that∣∣∣∣∂f∂λ (t; (σ, λ))

∣∣∣∣ ≤ p+ · kp+/s+1

c1
(|x0(t)|+ |h(t)|)p(t)

with c1 = min
(
∥x0∥p−+s

Lp(·) , ∥x0∥p++s

Lp(·)

)
. Thus, we can now consider

g(t) = max

(
p+ · kp+/s

c
,
p+ · kp+/s+1

c1

)
(|x0(t)|+ |h(t)|)p(t) ,

as dominating function, which is integrable on Ω, as already stated before.
Hence differentiation and integration in ϕ commute, leading to

∂ϕ

∂σ
(σ, λ) =

∂

∂σ

[∫
Ω

f(t; (σ, λ)) dt− 1

]
=

∫
Ω

[
∂

∂σ
f(t; (σ, λ))

]
dt

=

∫
Ω

p(t)
|x0(t) + σh(t)|p(t)−1 sign (x0(t) + σh(t))

λp(t)/s
h(t)dt, (27)

∂ϕ

∂λ
(σ, λ) =

∂

∂λ

[∫
Ω

f(t; (σ, λ))dt− 1

]
=

∫
Ω

[
∂

∂λ
f(t; (σ, λ))

]
dt

= −
∫
Ω

p(t) · |x0(t) + σh(t)|p(t)

sλp(t)/s+1
dt. (28)

From (27) and (28), the continuity of ∂ϕ
∂σ and ∂ϕ

∂λ is straightforward.

ii) By Definition 4 of Luxemburg norm and Proposition 2.1 (i),

ϕ (0, ∥x0∥sLp(·)) =

∫
Ω

∣∣∣∣ x0(t)

∥x0∥Lp(·)

∣∣∣∣p(t) dt− 1 = 0.

iii) We have similarly

∂ϕ

∂λ
(0, ∥x0∥sLp(·)) = −

∫
Ω

p(t)
|x0(t)|p(t)

∥x0∥p(t)+s

Lp(·)

dt

≤ − p−
∥x0∥sLp(·)

∫
Ω

∣∣∣∣ x0(t)

∥x0∥Lp(·)

∣∣∣∣p(t) dt = − p−
∥x0∥sLp(·)

< 0.
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We can now obtain formula (19) from (23), plugging σ = 0 into (27) and (28).
Recall that we are computing the gradient of ∥ · ∥sLp(·) , thus a multiplication by 1

s is
needed to obtain (19).

To conclude the proof, it remains to consider the case x0 = 0. The real function
σ 7→ ∥x0 + σh∥sLp(·) , with σ ∈ R, becomes σ 7→ ∥σh∥sLp(·) . We have

lim
σ→0

∥x0 + σh∥sLp(·) − ∥x0∥sLp(·)

σ
= lim

σ→0

∥σh∥sLp(·)

σ
= lim

σ→0

|σ|s∥h∥sLp(·)

σ
= 0,

since s > 1, which proves the differentiability at the origin as well. □

It is easy to check that, if p(·) ≡ p is constant, with 1 < p < +∞, then JLp(·)

s

coincides with JLp

s , the duality map (14) of classical (i.e. constant exponent)
Lebesgue spaces ⟨JLp

s (x), h⟩ = ∥x∥s−p
p

∫
Ω
sign

(
x(t)

)
|x(t)|p−1h(t)dt-

3.3 The discrete case: variable exponent sequence spaces

As well as for Lp(Ω) spaces, which have their discrete analogue lp, as sketched
at the end of Section 2.3, the same holds for Lp(·)(Ω) spaces with variable
exponent. Let P be the set of real sequences (pn)n∈N, where pn ∈ R ∀n,
such that 1 < p− = infn∈N pn ≤ p+ = supn∈N pn < +∞ . P contains all
the sequences we consider as variable exponents in the discrete setting. Given
(pn)n∈N ∈ P, for any real sequence x = (xn)n∈N, where xn ∈ R ∀n, the
modular function of Definition 3 is here naturally defined as

ρ(pn)(x) =
∑
n∈N

|xn|pn . (29)

Definition 7 [13] The space l(pn) is the set of real sequences x = (xn)n∈N such that

ρ(pn)

(
x
λ

)
< 1 for some λ > 0. For any x = (xn)n∈N ∈ l(pn), the (Luxemburg) norm

on l(pn) is defined as

∥x∥(pn) := inf
{
λ > 0 : ρ(pn)

(x

λ

)
≤ 1

}
and the space

(
l(pn), ∥ · ∥(pn)

)
is a Banach space.

Obviously, in this Banach space is defined the duality map of Definition 1.
The duality map of x ∈ l(pn) with the gauge function t 7→ ts−1, for s > 1, is a

linear operator J l(pn)

s (x) : l(pn) −→
(
l(pn)

)∗
and can be obtained rewriting (19)

in the discrete form. Its explicit formula can be proved similarly to Theorem 4,
since the formula and its proof is the generalization to the functional 1

s∥x∥
s
(pn)

of the Fréchet derivative of the norm ∥x∥(pn) introduced in [19].

Theorem 5 Given (pn)n∈N ∈ P a variable exponent, that is, with 1 < p− ≤ p+ <

+∞, then
(
l(pn), ∥x∥(pn)

)
is smooth. For each x = (xn)n∈N ∈ l(pn) and for any
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s > 1, the duality mapping J l(pn)

s (x) : l(pn) −→ (l(pn))∗ is the linear operator such
that

⟨J l(pn)

s (x), h⟩ = 1∑
n∈N

pn|xn|pn
∥x∥pn

(pn)

∑
n∈N

pn sign(xn)|xn|pn−1

∥x∥pn−s
(pn)

hn. (30)

for any h = (hn)n∈N ∈ l(pn).

Proof We just sketch the proof, being similar to the one of Theorem 4, reduced to the

discrete case as in [19]. By Definition 1, we know that J l(pn)

s = ∂
(
1
s∥ · ∥

s
(pn)

)
. Hence

the proof consists in the computation of the gradient of the functional x ∈ l(pn) 7−→
1
s∥·∥

s
(pn)

. With the same rationale and steps of the proof of Theorem 4, for any fixed

x ∈ l(pn) and any possible direction h ∈ l(pn), the function σ ∈ R, σ 7→ ∥x+ σh∥s(pn)

is proven to be differentiable at σ = 0, leading to the explicit formula (30). □

We denote by (p∗n)n∈N the Hölder conjugate sequence of (pn)n∈N, that is,
1
pn

+ 1
p∗
n
= 1 for any n ∈ N. Again with a strong analogy with the arguments

of Section 3.2, there exists an isometric embedding between
(
l(pn)

)∗
and its

associate space A(l(p
∗
n)) ⊆ l(p

∗
n), which allows to write

J l(pn)

s (x) =
1∑

n∈N
pn|xn|pn
∥x∥pn

(pn)

(
pn sign(xn)|xn|pn−1

∥x∥pn−s
(pn)

)
n∈N

∈ l(p
∗
n). (31)

Anyway, as well as there is not an isometric isomorphism between Lp∗(·)(Ω)
and (Lp(·)(Ω))∗ (as stated by Proposition 3.2), in the discrete case there is not

an isometric isomorphism between l(p
∗
n) and

(
l(pn)

)∗
too.

According to (7), with (14) and (15), the isometric isomorphism allowed us
to obtain an exact and explicit formula for the inverse of the duality mapping
in the classical case of Lp(Ω) and lp spaces with constant exponent p ∈ (1,+∞)
only. In particular, we can write(

JLp

s

)−1

= J
(Lp)∗

s∗ = JLp∗

s∗ and
(
J lp

s

)−1

= J
(lp)∗

s∗ = J lp
∗

s∗ ,

with s∗ Hölder conjugate of s. In order to be able to use Algorithm 1 also
in variable exponent spaces Lp(·)(Ω) or l(pn), where each isomorphism is not
isometric, we nevertheless consider the following approximations(

JLp(·)

s

)−1

= J
(Lp(·))∗

s∗ ≈ JLp∗(·)

s∗ and
(
J l(pn)

s

)−1

= J
(l(pn))∗

s∗ ≈ J l(p
∗
n)

s∗ .

These approximations provide an inexact but explicit formula of the dual-
ity maps for the dual space l(p

∗
n). Although Proposition 3.2 states that the

norms of Lp∗(·)(Ω) and (Lp(·)(Ω))∗ are not isometric, it shows one-half and
double size bounds among them. Unfortunately, since the duality maps are
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the Fréchet derivative of the s-power norm functional of Definition 1, these
bounds do not give any quantitative information about the goodness of the
approximations. Anyway, due to continuity arguments, we can say that the ap-
proximation should be good for small ranges [p−, p+] of exponent values, since
for p− = p+, which coincides with the constant exponent case, the equality
holds. In Algorithm 2 we rewrite the Landweber (dual) method for the dis-
crete sequence case, which will be used in our numerical tests to solve (1) with
A ∈ L(l(pn), l(pn)) and y ∈ l(pn).

Algorithm 2 Landweber (dual) method in l(pn)

Parameters: s, r > 1, (pn)n∈N ∈ P.

Initialization: Start with x0 ∈ l(pn), x∗
0 = J l(pn)

r (x0) ∈ l(p
∗
n).

FOR k = 0, 1, . . . REPEAT

x∗
k+1 = x∗

k − αkA
∗J l(pn)

r (Axk − y) ,

xk+1 = J l(p
∗
n)

s∗ (x∗
k+1) ,

where

αk = argmin
α>0

∥AJ l(p
∗
n)

s∗

(
x∗
k − αA∗J l(pn)

r (Axk − y)
)
− y∥rl(pn) ,

We remark that both the duality maps J l(pn)

r and J l(p
∗
n)

s∗ can be computed
by (31), so that the algorithm is completely implementable in closed form.

The same tools can be used to extend other one step minimization algo-
rithms to Banach spaces, by exploiting their geometrical properties in order
to enhance sparsity or quality of the edges. The basic idea is again to compute
any iterative step in the dual space. We report in Algorithm 3 the extension
of the conjugate gradient method, whose convergence in conventional constant
exponent Lebesgue spaces lp has been studied in [20].

The computation of the optimal step size αk in l(pn) is an expensive task for
both algorithms, due to the involved Luxemburg norms. In the next numerical
section we will discuss some sub-optimal approximations schemes for αk, which
require a much lower numerical complexity.

4 Numerical results

In this section we shoe numerically the regularization effectiveness of descent
algorithms in variable exponent Lebesgue spaces for imaging reconstruction.

The idea of working in these particular Banach spaces comes from the at-
tempt to combine simultaneously the benefits of both the classical methods
in Hilbert space L2 and the more recent approaches in conventional Banach
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Algorithm 3 Conjugate gradient (dual) method in l(pn)

Parameters: s, r > 1, (pn)n∈N ∈ P, 0 < γ < 1
2 .

Initialization: x0 ∈ l(pn), x∗
0 = J l(pn)

r (x0) ∈ l(p
∗
n), d∗0 = A∗J l(pn)

r (y).

FOR k = 0, 1, . . . REPEAT

x∗
k+1 = x∗

k + αkd
∗
k,

xk+1 = J l(p
∗
n)

s∗ (x∗
k+1) ,

d∗k+1 = −A∗J l(pn)

r (Axk+1 − y) + βk+1d
∗
k ,

where
αk = argmin

α>0
∥AJ l(p

∗
n)

s∗ (x∗
k + αd∗k)− y∥rl(pn) ,

and

βk+1 = γ
∥Axk+1 − y∥r

l(pn)

∥Axk − y∥r
l(pn)

spaces Lp. In fact, the exponent p, with 1 < p ≤ 2, can be heuristically consid-
ered as a regularization parameter. The blurred image is reconstructed with a
different level of regularization according to the value of p: on the one hand,
if p ≈ 1, the restoration is more sparse, details and edges of the image are
sharper, the background has low ringing effects, but the algorithm results to
be less numerically stable; on the other hand, if p ≈ 2 the algorithm is numeri-
cally stable, but the restored image is generally oversmoothed. Thus, to obtain
a reliable reconstruction, each region of the input image should be differently
regularised (e.g. depending on whether the region is just background, or there
are small objects, edges, or large flat brightness areas). In the following sub-
sections, an adaptive strategy is provided, where at each point of the blurred
image a specific exponent p is automatically associated.

4.1 A first signal deblurring test

Before showing image reconstruction examples, we start considering a simple
1D reconstruction of an heterogeneous signal, composed of spikes on the left
and a smooth function on the right, see Figure 1 (left, black line). Given a
Gaussian convolution operator A : X −→ Y and the noisy and blurred data
y ∈ Y, we compute the first 2000 iterations of the minimization Algorithm 1
for the (regularized) solution x ∈ X of (1). The blurred data is corrupted by
about 10% of Gaussian white noise, see Figure 1 (left, red line). Since we are in
a test environment, the data sets always include the true signal xtrue, in order
to compare and evaluate the performances of the implemented algorithms in
terms of the relative reconstruction errors (RREs), namely computing at each
iteration k the quantity

ϵk =
∥xk − xtrue∥2

∥xtrue∥2
, (32)
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where xk is the restored signal at the k-th iteration and ∥·∥2 is the conventional
l2 norm.

In this first test, the simplest sub-optimal constant step size αk = α =
1/∥A∥22, suitable in conventional l2 Hilbert context, is always applied. Anyway,
we will discuss a more advanced step size choice in the following section related
to image deblurring. In Table 1 we report on the left the minimum value of such
RREs ϵk, and on the right the minimum value of the residual, also called cost
function, (9), all computed by the same L1.5 norm for comparison purposes.
By means of Algorithm 1 (always with norm powers p = r = 2), we first show
the conventional Hilbert space l2 algorithm (i.e. X = Y = l2) in the first row
of the table. In the subsequent rows, we consider X = lp constant exponent
or l(pn) variable exponent Banach spaces with Y = l2, as well as X = Y = lp

or X = Y = l(pn). Generally, the l(pn) restorations lead to smaller RREs ϵk
in about 100 − 200 iteration, while the Hilbert and lp ones do not achieve
their minimum RREs within 2000 iterations. For instance, for the Hilbert case
X = Y = l2, the smallest RRE is 0.4883 and for the constant exponent Banach
space X = Y = l1.5, the smallest RRE is 0.3952, both at iteration 2000. On
the other hand, for X = Y = l(pn) with p− = 1.3 and p+ = 2, the smallest
RRE 0.4594 is obtained at iteration 75. Similar comments can be done for the
values of the cost function (9) on the right part of the table.

X Y [p−, p+] Min rel. error Min cost func.
value iteration value iteration

l2 l2 0.4883 2000 203.4 2000
l1.5 l2 0.5335 2000 550.9 2000

l(pn) l2 [1.3, 2] 0.4189 151 739.3 87

l(pn) l2 [1.5, 2] 0.4700 149 603.1 110

l(pn) l2 [1.4, 1.8] 0.4296 235 632.1 205
l1.5 l1.5 0.3952 2000 198.8 2000

l(pn) l(pn) [1.3, 2] 0.4594 75 325.3 73

l(pn) l(pn) [1.5, 2] 0.4580 139 368.0 116

l(pn) l(pn) [1.4, 1.8] 0.4357 153 356.9 117

Table 1: Minimum relative reconstruction error (32) and minimum value of
the cost function (9) with p = 1.5, of the first numerical test (see Fig. 1), for
different choices of X and Y .

In Figure 1, left side, the usual behaviour of l2 Hilbert space reconstruction
is shown in green. It is enough good in the smooth part on the right, but
strongly bad in the spiked part on the left. The lp reconstruction, with p = 1.5,
is shown in the blue plot of Figure 1, right side. Now the situation is the
opposite, the result is enough good in the piked part but strongly bad in the
smooth part, since small exponents 1 < p < 2 promote sparsity. The attempt
of combine the good performances of both these two approaches by working
in l(pn) spaces can be viewed in the red plot of Figure 1, right side. Here, we
can see that the restoration is good on both the two parts of the signal. The
exponent function pn is shown by dot-dashed black line: in the sparse part it



Springer Nature 2021 LATEX template

Dual descent regularization algorithms 23

is a rescaling between p− = 1.3 and p+ = 2 of the blurred data, in order to
enhance sparsity on the background regions, whilst in the smooth part is fixed
to 2, in order to benefit from smoothness of Hilbertian setting.

Figure 1: Left plots: true signal, blurred data of the first numerical test and
X = Y = l2 Hilbert restoration within 2000 iterations. Right plots: restoration
with minimum cost function within 2000 iterations, for X = Y = l2, X = Y =
l1.5, and X = Y = l(pn). The exponent function is plotted in dot-dashed line
with p− = 1.3 and p+ = 2.

In Tables 2 we report the results of the restoration of another signal, with
peaks of different magnitudes and sign, as shown in Figure 2. To corroborate
the effectiveness of the variable exponent approach, we directly minimize the
modulus ρ̃(pn)(·) of the residual Axk − y, where

ρ̃(pn)(z) =
∑
n∈N

|zn|pn

pn
.

Although the modular is not a norm, it is convex and we can consider its
subdifferential as well in the place of the duality map of Algorithm 1 [21]. The
modular leads to a simpler and faster implementation, and allow to confirm
the flexibility and the robustness of the variable exponent approaches. In Table
2 the best results within 2000 iterations are given, and some values are also
reported in Table 3 at the fixed iteration 500. The restoration of l(pn) are always
better than both the l2 Hilbert and the lp constant exponent ones, whether
the relative error or the cost function are considered. The exponent function
pn is again shown by dot-dashed black line. Now it is set to p− = 1.3 in the
spiked part to enhance sparsity and p+ = 1.6, 2, 2.5 in the smooth part to
enhance regularity. In Fig. 2, left side, the restorations with the smallest RRE
are shown, for X = Y = l2, X = Y = l1.3 and X = Y = l(pn), with p− = 1.3
and p+ = 2. The l(pn) restoration (red line) has the lowest ringing effects and
oscillations in both the spiked and the smooth part, while the l2 restoration
(green line) is good on the smooth part only, and the l1.3 restoration (blue
line) is good on the spiked part only, as expected. The same behaviour can
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be seen on the right plots of the figure, where the results at iteration 500 are
shown. We highlight here the valuable quality of the restored signal for the
l(pn) setting. The corresponding numerical values are reported in Table 3. The
corresponding convergence histories of the relative error and the cost function
are shown in Figure 3. These plots show that, although the mimization of the
cost function (9) behaves similarly (left image), the relative errors (32) are
different (right image), expecially for the Hilbertian l2 case. This is a typical
behaviour of iterative regularization methods for ill-posed problems, such as
signal and image deblurring.

X Y [p−, p+] Min rel. error Min cost func.
value iteration value iteration

l2 l2 0.3770 2000 162.52 2000
l1.3 l2 0.2305 2000 158.64 2000
l1.5 l2 0.2767 2000 159.26 2000

l(pn) l2 [1.3, 1.6] 0.2230 2000 158.80 2000

l(pn) l2 [1.3, 2] 0.2201 2000 158.99 2000

l(pn) l2 [1.3, 2.5] 0.2195 2000 159.44 2000
l1.3 l1.3 0.2402 1222 157.75 2000
l1.5 l1.5 0.2722 2000 158.25 2000

l(pn) l1.6 [1.3, 1.6] 0.2219 2000 158.06 2000

l(pn) l1.3 [1.3, 2] 0.2174 1744 157.91 2000

l(pn) l1.5 [1.3, 2.5] 0.2143 2000 158.76 2000

l(pn) l(pn) [1.3, 1.6] 0.2180 1875 157.95 2000

l(pn) l(pn) [1.3, 2] 0.2103 2000 158.68 2000

l(pn) l(pn) [1.3, 2.5] 0.2084 2000 159.95 2000

Table 2: Minimum relative errors (32) and minimum values of the cost func-
tion (9), with p = 1.5, of the second numerical test (see Fig. 2), for different
choices of X and Y.

Figure 2: Left plots: restorations with minimum relative errors within 2000
iterations. Right plots: restorations at iteration 500. Second numerical test for
X = Y = l2, X = Y = l1.3, and X = Y = l(pn). The exponent function is
plotted in dot-dashed line, with p− = 1.3 and p+ = 2.
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X Y [p−, p+] Rel. error Cost func.

l2 l2 0.4209 188.64
l1.3 l1.3 0.2670 160.20

l(pn) l(pn) [1.3, 2] 0.2583 161.94

Table 3: Relative reconstruction errors (32) and cost functions (9) with p =
1.5, at the iteration 500 for the second test (see Fig. 2, left plots)

Figure 3: Converge histories of the example of Figure 2. Left plots: relative
restoration errors (32). Right plots: cost function values (9), with p = 1.5.

4.2 Image deblurring tests

The well-known discrete model of the imaging reconstruction problem asso-
ciated to (1) is given by the linear equation Ax = y , where A is the square
matrix version of the Point Spread Function (PSF) of the acquisition tool, x
is (the vectorization of) the unknown (true) image, and y is (the vectorization
of) the blurred and noisy image. We consider here just monochromatic images,
where the light intensity is associated to grey levels.

Since the introduction of variable exponent Lebesgue spaces for imaging is
independent on the specific descent algorithm applied, we now provide results
of the two Algorithms 2 and 3, namely the Landweber and Conjugate Gradient
(CG) methods. After discussing the choice of the exponent function and of the
step size, we show the results related to two different numerical data sets. The
first is the largely used “satellite” data set, the latter is a “rectangles” data
set we have specifically designed to test the algorithms.

4.2.1 Setting the exponent values

The key step for the application of descent methods in Lp(·) is the definition
of the exponent function p(·). In particular, in image restoration the exponent
sequence p = (pn) is (the vectorization of) a matrix with the same dimensions
of the images x and y, that is, p is a finite sequence reshaped as matrix.

In our proposal, the values of the exponent matrix p are assigned according
to the grey levels, that is to the light brightness of each pixels of the blurred
data y, by some interpolation procedure. We assume here that the background
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is characterized by dark pixels, that is, with the lowest values of light bright-
ness, as in astronomical imaging. Hence, let m and M denote respectively the
minimum and the maximum values of the blurred image y. According to the
notation of Section 3.3, given p− and p+, with 1 < p− ≤ p+ ≤ 2, respectively
the chosen and prefixed minimum and the maximum values of p, the exponent
matrix p is constructed as follows: p− is assigned to the pixels with the lowest
brightness intensity m, p+ is assigned to the pixels with the highest intensity
M , and the other values between p− and p+ are assigned by interpolation. This
way, low grey levels of the images are associated with small values of the expo-
nent p (useful for background restoration and sparsity promotion), whilst high
grey levels are associated with large values of p (useful for stability and correct
restoration of the right brightness intensities in flat regions). Basically, the in-
terpolating function can be arbitrary chosen, with the only assumption that it
must be an increasing function passing through (m, p−) and (M,p+). At this
purpose, we have identified and tested the following 5 elementary functions
endowed with different basic interpolation behaviours:
(a) line on [0, 1],
(b) parabola on [0, 1],
(c) sine [−π

2 ,
π
2 ],

(d) square root on [0, 1],
(e) arc-sine on [−1, 1],
properly dilated onto (m, p−) and (M,p+) by linear homotopy (see Fig. 4).

(a) Line. (b) Parabola. (c) Sine.

(d) Square root. (e) Arc-sine

Figure 4: Plots of the functions used as interpolation functions.
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With regard to the choice of the p− and p+, the stability of the algorithms
heavily depends on the dimension and type of signal or image given as input.
As already stated for the constant exponent case in [22], higher instabilities
generally emerge for exponents p < 1.2. As a consequence, in the following
tests we just consider p− ≥ 1.2.

4.2.2 Setting the step size

The implementation of any one-step descent method generally involves the
one-dimensional minimization of the residual required for the computation of
the optimal step size, that is, the solution of the minimization problem for
obtaining αk in our Algorithms 2 and 3. In the Hilbertian context, from basic
numerical linear algebra arguments, we know that the constant choice αk =
α ∈ (0, 2/∥A∥2), although not optimal, ensures convergences of Algorithm 2,
while the optimal explicit formula αk = ∥A∗(Axk − y)∥2/∥Adk∥2 is provided
for Algorithm 3, namely the CGLS method.

In Banach spaces there is not any explicit formula, so that the minimization
problem has to be numerically solved. Anyway, in the constant exponent case
Lp, the norm is easy and fast to compute, so that the minimization can be
efficiently implemented. On the contrary, in the variable exponent framewrok,
the computation of the Luxemburg norm of Definition 7 is expensive, so that
the solution of the minimizaton problem for the step size heavily increases the
computational time of each iteration.

To overcome this issue, we have tested some alternative strategies that
avoid the use of the l(pn) norm. Among these, we have empirically proved that
the problem can be addressed using the values α′

k computed minimising the
(constant exponent) lp norm with p = pav, where pav is the a weighted average,
with respect to the current iteration, of the pn values defined as

pav =
log(ρ(pn)(xk))

log(∥xk∥(pn))
, (33)

where ρ(pn) is the modular function (29). Basically, pav is the constant radical
which, locally on xk, would give the same value of the Luxemburg norm if
applied to the modular, that is ∥xk∥pav

(pn)
= ρ(pn)(xk).

4.2.3 Satellite data set

In this section the widespread 256× 256 satellite data set of Fig. 5 is used as
reference deblurring problem. The noise on the blurred image is white Gaussian
of about 5% [9].

We start dealing with Landweber dual Algorithm 2, where the simplest
sub-optimal constant step size αk = α = 1/∥A∥22 of the previous 1D test is
again applied. Fig. 6, left plot, shows the relative reconstruction errors (32)
(RREs) (32) among some choices of all the tested values p− and p+, in the
first 150 iterations. We see that, in this more involving 2D case, the largest
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(a) Exact image (b) PSF (c) Blurred image

Figure 5: Satellite data set.

size of the exponent interval [p−, p+] = [1.2, 2] leads to instabilities and fast
semiconvergence (blue line). The choice [p−, p+] = [1.2, 1.3] is able to provide
both stability and low RREs (light blue line). In Table 4 we report the RREs
(32) every 50 iterations using the different interpolating functions with p− =
1.2 and p+ = 1.3.

Figure 6: RREs (32) vs number of iterations for Landweber algorithm in Lp(·).
Left plots: Lp(·) with different intervals [p−, p+] and different interpolation
functions. Right plots: Lp(·) with [p−, p+] = [1.2, 1.3] and arc-sine interpola-
tion, compared with constant exponent spaces L1.2 and L2.

In Fig. 6, right plot, RREs (32) of the first 450 iterations are shown, with
the use of the arc-sine as interpolating function, which has been found to be
the best promising one. The graph is compared with the RREs obtained by
the Landweber algorithms in constant exponent Lebesgue space L1.2 and in
conventional Hilbert L2 one. It is evident that the Landweber method in the
space Lp(·) completely outperforms the classical approach in the Hilbert space,
but also allows to obtain a smaller reconstruction error in the first iterations
than working in L1.2.

Figure 7 shows the images resulting after 150 iterations. The reconstruc-
tions are consistent with what is deduced from the study of the RREs. As a
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Iteration 50 100 150 200

Interpolation Relative error
Line 0.4334 0.3858 0.3766 0.3815

Parabola 0.4295 0.3874 0.3741 0.3680
Sine 0.4246 0.3849 0.3753 0.3733

Square root 0.4253 0.3813 0.3751 0.3812
Arc-sine 0.4265 0.3831 0.3708 0.3656

L1.2 0.4364 0.3982 0.3809 0.3698
L2 0.5686 0.5196 0.4901 0.4692

Table 4: RREs (32) every 50 iterations for the Landweber algorithm in Lp(·)

with [p−, p+] = [1.2, 1.3], using the 5 interpolating functions of Fig. 4.

(a) Landweber in L2 (b) Landweber in L1.2 (c) Landweber in Lp(·)

Figure 7: Reconstructions by Landweber algorithm at iteration 150 in L2, in
L1.2, and in Lp(·) with 1.2 ≤ p ≤ 1.3 and arc-sine interpolation.

matter of fact, quality of the deblurred image Fig. 7c is better than Fig. 7a in
L2, and although minimal, there are also visual benefits compared to recon-
struction in L1.2 of Fig. 7b. In particular, edges are sharper and thin details,
such as the diagonal shaft, are more evident in Fig. 7c than Fig. 7b.

Dealing with the Conjugate Gradient (CG) method of Algorithm 3, it is
expected to speed-up the convergence, hence to reduce the number of iterations
with respect the Landweber one, which is generally very slow. For the CG,
we study the computation of the step size αk, which is a critical tasks. First
we compare the RREs of the method with respect to the usage of the exact
step size αk and its approximation α′

k obtained by minimizing the (constant
exponent) Lpav norm of the residual, where pav is the exponent average (33).

Surprisingly enough, the results obtained are very similar, both in terms of
the values of the step sizes and with respect to the quality of the reconstructed
images, although the time for each iteration decreases from 40 sec to 12 sec by
using the sub-optimal choice α′

k. This behaviour can be well observed in Fig. 8,
where the RREs of CG Algorithm 3 with αk and α′

k for k = 0, ..., 150 almost
completely overlap each other. Moreover, in Fig. 9 the computed values of αk

and α′
k are showed. The trend of the two sequences is very similar, except for
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Figure 8: RREs (32) for CG in Lp(·) using step sizes αk and α′
k.

few indexes, which denotes a reliable outcome. According to these considera-
tions, the tests we consider in the following always will use the sequences of
values {α′

k} as descent steps, since much faster to compute.

Figure 9: αk values obtained minimising the residual in norm p(·), α′
k values

obtained minimising the residual in norm pav (33), and their distances.

Iteration 40 80 120 150

Interpolation Relative error
Line 0.4218 0.3852 0.3668 0.3640

Parabola 0.4328 0.3906 0.3681 0.3665
Sine 0.4205 0.3925 0.3761 0.3633

Square root 0.4228 0.3817 0.3712 0.3755
Arc-sine 0.4178 0.3824 0.3655 0.3569

L2 0.3564 0.4104 0.6115 1.0104
Landweber 0.4485 0.4022 0.3768 0.3766

Table 5: RREs (32) for the CG algorithm in Lp(·) with 1.2 ≤ p ≤ 1.3, using
the 5 interpolation functions of Fig. 4.
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Figure 10: RREs (32) for CG and Landweber in Lp(·), with 1.2 ≤ p ≤ 1.3
and arc-sine interpolation, and conventional CG in L2.

Again considering 1.2 ≤ p ≤ 1.3, Table 5 reports the RREs with respect to
the use of the 5 interpolation functions of Section 4.2.1, which confirms that
arc-sine outperforms all the other choices. The convergence history is shown
in Fig. 10 for CG and Landweber both in Lp(·), together with the conven-
tional CG method in L2. In practice, both the methods in variable exponent
Lebesgue space are not faster than the classic CG method in L2. However,
Lp(·) gives rise to higher regularization stability, limiting the phenomenon of
semi-convergence, which in Hilbert causes a fast growth of the error. The
restorations after 150 iterations are shown in Figure 11. It can be seen that
the reconstruction of the CG in Lp(·) (Fig. 11c) is slightly better than the re-
construction obtained with Landweber (Fig. 11b), since small details in the
arms of the satellite are more visible.

(a) CG in L2 (b) Landweber in Lp(·) (c) CG in Lp(·)

Figure 11: Reconstructions by CG at iteration 150 in L2 and in Lp(·) with
1.2 ≤ p ≤ 1.3 and arc-sine interpolation.
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4.2.4 Rectangles data set

A second data set is used to focus the analysis on both edges detection and
smooth reconstruction of uniform areas. The data set is hence characterised
by (i) large flat regions with constant grey value and (ii) high discontinuities,
as shown in Figure 12, where the PSF is the same of the satellite data set.

(a) Exact image (b) PSF (c) Blurred image

Figure 12: Rectangles data set.

(a) Landweber in L2 (b) Landweber in Lp(·) (c) Lp(·) with update

Figure 13: Reconstructions by Landweber algorithm at iteration 100 in L2,
in Lp(·) with 1.3 ≤ p ≤ 1.6, arc-sine interpolation and updated square root
interpolation.

By our experiments, a good interval range for p is [p−, p+] = [1.3, 1.6].
In Figure 13a the restoration with Landweber in L2 can be compared to the
restoration in Lp(·) of Fig. 13b, again with arc-sine as interpolation function,
both after 100 iterations. Figure 13c instead shows the reconstructed image
obtained using the square root as interpolation function, and employing an
update of the exponent matrix p every n iterations, with n = 30. With this
updating strategy, the iterative scheme does not change, but the matrix p is
redefined after each n iterations relying on the (n−1)-th reconstruction instead
of the blurred fixed data y. By means of the (n − 1)-th reconstruction, it is
possible to take advantage of less blurred images to associate optimally the
smaller values of p to the small grey levels and the higher values of p to the
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high grey levels, making the details more defined and the background more
uniform. This technique is very promising if applied for the reconstruction of
images with discontinuities and uniform areas, such as the rectangles image.
The benefit of working in the variable exponent Lebesgue spaces is therefore
evident in Fig. 13. In particular the reconstructed figures are more defined
than in L2, especially the rectangle on the right, since edges are sharper and
flat areas are less affected by ringing.

Figure 14: RREs (32) for CG in various Lp(·) cases, compared with CG in
L1.3, and CG in L2.

Regarding the CG method, the situation is analogous to the satellite data
set. Indeed, while the use of the CG in the Hilbert space is very fast, but also
suffers from the fast semi-convergence (i.e. now after about 30 iterations the
error increases ), the use of the CG in Lp(·) allows a better stability of the
algorithm, as shown by the convergence history of Fig. 14. In addition, the
main advantages are in the ability to restore the homogeneity of the areas
with uniform grey level and of the background. Figure 15 shows the best
image resulting from the use of the CG in L2 after 30 iterations (Fig. 15a),
compared with the reconstruction obtained after 80 iterations with the CG in
Lp(·), both with the fixed matrix p constructed through arc-sine (Fig. 15b) and
with the matrix p updated every 40 iterations constructed through square root
(Figure 15c). From the figures, it is clear that the application of the Conjugate
Gradient algorithm in Lp(·) with the update of the matrix p provides the best
outcome: the 6 rectangles are well recognisable with quite uniform and separate
colours, the edges are visible, and the background is uniform too.

5 Conclusion

In this paper, we proposed to solve ill-posed inverse problems in the unusual
setting of variable exponent Lebesgue spaces Lp(·) by one-step iterative algo-
rithms. We also gave a comprehensive review of the generalization of one-step



Springer Nature 2021 LATEX template

34 Dual descent regularization algorithms

(a) CG in L2 (b) CG in Lp(·) (c) CG with update

Figure 15: CG algorithm: best reconstructions in L2 (iteration 30), recon-
struction at iteration 80 in Lp(·) with arc-sine interpolation, and in Lp(·) with
updated square root interpolation, both with 1.3 ≤ p ≤ 1.4 .

iterative methods to Banach spaces for the resolution of ill-posed inverse prob-
lems. In this case, it is necessary to introduce duality mappings to embed
primal and dual spaces and to define gradient descent iterations. To this aim,
we first proved an explicit formula for the computation of the duality map in
Lp(·) spaces. Moreover, we studied two possible approaches: performing the
gradient step in the primal space (primal method) or in the dual space (dual
method).

We showed the deep connection between these regularization iterative
schemes and convex optimization by rewriting the Landweber iterations in Ba-
nach spaces as a proximal algorithm. In our insight, the primal method can
be seen as a proximal iteration defined in terms of the usual Euclidean dis-
tance, whilst the dual method as a proximal iteration defined via the Bregman
distance, generally more suitable to Banach spaces. This novel interpretation
gives a useful heuristic and intuitive meaning of the iterative regularization in
Banach spaces.

In the numerical section, we applied the Landweber dual method (Algo-
rithm 2) and the Conjugate Gradient method (Algorithm 3) to solve signal and
imaging deblurring problems in Lp(·). We showed as Lp(·) can be effectively
used as solution spaces, since they allow to induce adaptive and space-variant
regularization, without the use of specific penalty terms. We proposed a simple
yet effective way to choose a variable exponent p(·) in order to enforce smooth-
ness in the background of images as well as to preserve discontinuities at the
edges and enforce sparsity. These first numerical results validated the choice of
Lp(·) spaces for the resolution of deblurring imaging problem. Conjugate gra-
dient method combined with an updating strategy for the variable exponent
led to significantly improved images w.r.t. the classical L2 reconstruction.

Further investigations about suitable stopping rules and choices of the ex-
ponent map p(·) will be object of future work, together with the application
of other optimization algorithms in the same setting of Lp(·) spaces.
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