
Zeroth order optimization with orthogonal random directions

David Kozak∗ Cesare Molinari† Lorenzo Rosasco‡ Luis Tenorio § Silvia Villa ¶

Abstract. We propose and analyze a randomized zeroth-order approach based on approximating the exact gradient by
finite differences computed in a set of orthogonal random directions that changes with each iteration. A number of
previously proposed methods are recovered as special cases including spherical smoothing, coordinate descent, as well
as discretized gradient descent. Our main contribution is proving convergence guarantees as well as convergence rates
under different parameter choices and assumptions. In particular, we consider convex objectives, but also possibly
non-convex objectives satisfying the Polyak-Łojasiewicz (PL) condition. Theoretical results are complemented and
illustrated by numerical experiments.

1 Introduction

It is common in engineering, economics, statistics, and machine learning to try to minimize a function for
which no analytical form is readily accessible, and only a zeroth-order oracle giving the function value at a
given point is available. Sometimes an analytical form for the function exists, but the gradient does not have
an explicit expression or it is infeasible to obtain. Specific examples of both scenarios are highlighted in the
first chapter of [18], to which we add reinforcement learning [48, 35, 15, 22]. When only function evaluations
are available the options for optimization are somewhat limited. Some of the earliest theoretical analysis of
zeroth order optimization was done on random search [37, 44]. In random search, a step is proposed in a
randomly chosen direction and the objective function is computed; if it provides an improvement over the
function value at the current position then the step is taken, otherwise a new random sample is drawn and the
process is repeated. This approach has the downside of not using derivative information, therefore relying
on inexpensive function evaluations and converging slowly due to the uninformed search directions. Older
methods, such as discrete gradient descent and discrete coordinate descent [56, 30], have similar aims but
actually use approximate derivative information to determine how far to step.Extensions to functions that
are differentiable almost-everywhere have been considered in [25, 26]. There are alternative algorithms that
behave similarly to (randomized) finite difference coordinate descent but use a random basis for choosing
descent directions [34, 40, 20, 22] and ample experimental results showcase the practical utility of these
approaches [48, 35, 15]. The Itoh–Abe discrete gradient method studied in [24, 45, 21] is another approach
to zeroth-order optimization, but at each iteration and for each coordinate it requires to solve a scalar equation
involving the objective function. Similar considerations apply for its stochastic version, where the stepsize
is still defined in an implicit way.

∗Solea Energy. E-mail: dkozak@soleaenergy.com
†Istituto Italiano di Tecnologia. E-mail: cecio.molinari@gmail.com
‡MaLGa, DIBRIS, Università di Genova CBMM, MIT Istituto Italiano di Tecnologia. E-mail: lorenzo.rosasco@unige.it
§Department of Applied Mathematics and Statistics, Colorado School of Mines. E-mail: ltenorio@mines.edu
¶MaLGa, DIMA, Università degli Studi di Genova. E-mail: villa@dima.unige.it

1

ar
X

iv
:2

10
7.

03
94

1v
2

 [
m

at
h.

O
C

]
 1

5
N

ov
 2

02
1

Our approach is based on approximating the exact gradient by finite differences computed in a set of
orthogonal random directions. Different randomized projection can be considered, recovering different ap-
proaches as special cases. Indeed, our general approach recovers finite difference versions of coordinate
descent, descent in subspaces defined by random orthogonal matrices, and spherical smoothing as special
cases. All these methods can be treated in a unified way with our approach. Our main contribution is proving
convergence results as well as convergence rates. For convex objectives, we study convergence in function
value and give realizable conditions for convergence of the iterates. Beyond convexity, we consider the case
when the objective satisfies the Polyak-Łojasiewicz (PL) condition for which we can give stronger guarantees
with faster rates. The PL condition is necessarily satisfied by functions that are strongly convex in which case
our results are trivially extended to convergence of the iterates to the unique minimizer. For many instances
of our general algorithm the derived results are new. Simple experiments are also provided to show that the
rates described by the theorems are achievable in practice.

The paper is organized as follows. In Section 2, we describe the general setting, proposed approach and
its special cases. In Section 3, we summarize and discuss our main results. In Section 4, we present useful
preliminary results. In Section 5 and 6, we detail and prove the results for the convex case and for objec-
tive functions satisfying a PL condition - respectively. In Section 7 we present numerical experiments and
conclude in Section 8 with some remarks and open questions.

2 Problem statement

We consider the problem of finding a point x∗ ∈ Rd such that f(x∗) = f∗, where

f∗ := inf
x∈Rd

f(x). (P)

The function f : Rd → R satisfies the following hypotheses:

(H.1) f∗ > −∞, f is differentiable and∇f is λ-Lipschitz; that is, for every x1 and x2 ∈ Rd,

‖∇f(x2)−∇f(x1)‖ ≤ λ ‖x2 − x1‖ .

(H.2) f is convex and has a minimizer in Rd.
The goal of this paper is to study the convergence properties of the stochastic iterative procedure described

in Algorithm 1, designed to solve numerically problem (P). This Algorithm is based on the finite difference
approximations of a subset of directional derivatives of f randomly chosen at each iteration. More precisely,
the steps of the algorithm are summarized as follows:

Algorithm 1: Zeroth order stochastic subspace algorithm
Let x0 ∈ Rd, let (αk)k∈N and (hk)k∈N be sequences of positive real values and let (Pk)k∈N be a
sequence of independent random matrices in Rd×` defined on the probability space (Ω,A,P).
for k = 0, 1, . . . do

xk+1 = xk − αkPk∇(Pk,hk)f(xk).

end

We briefly introduce the notation and explain the main ideas behind the algorithm. Given ` ≤ d, a matrix
P ∈ Rd×` and an index j ∈ [`] := {1, . . . , `}, we let p(j) ∈ Rd denote the j-th column of P . For h > 0,

2

define the vector∇(P,h)f(x) ∈ R` with entries[
∇(P,h)f(x)

]
j

:=
f(x+ hp(j))− f(x)

h
, ∀j ∈ {1, . . . , `}. (2.1)

Note that∇(P,h)f(x) is the finite difference approximation of the directional derivatives of f in the directions
identified by the columns of P . Since f is differentiable, lim

h→0+

[
∇(P,h)f(x)

]
j

= 〈∇f(x), p(j)〉 for every
j ∈ [`] and so

lim
h→0+

∇(P,h)f(x) = P>∇f(x).

Using the above notation, Algorithm 1 can be re-written more explicitly as

xk+1 = xk − αk
∑̀
j=1

f(xk + hkp
(j)
k)− f(xk)

hk
p

(j)
k .

The recursion has the same structure as classical gradient descent, but the gradient at xk is computed with
two different forms of approximations. On the one hand, the directional derivatives are replaced by finite
differences, no derivative of the function f is required. On the other hand, only the ` directions defined by the
columns of Pk are used. Note that ` may be smaller than the dimension of the ambient space d. Moreover,
the directions are chosen randomly at each iteration and are not necessarily drawn from the canonical basis.
Indeed, throughout the paper the following properties are the only ones required on the random matrices Pk:
for every k ∈ N,

(P.1) P>k Pk
a.s.
= (d/`) I;

(P.2) EPkP>k = I.
Next, we discuss several examples of algorithms that can be derived as special cases, see also Section 9.1.

Example 2.1 (Coordinate descent). If Pk contains ` columns of Id chosen uniformly at random without
replacement and with random sign, say ±ek1 , . . .± ek` , then p

(j)
k = ±ekj for j = 1, . . . , `, and Algorithm 1

corresponds to a discretized version of parallel block-coordinate descent.

Example 2.2 (Spherical smoothing). ConsiderPk = (
√
d/`)QkId×`, whereQk is as in theQR-decomposition

of a matrix Zk = QkRk ∈ Rd×d with Rkii > 0, and each element of Zk is drawn independently from
N (0, 1). The matrix Id×` truncates Qk to its first ` columns so QkId×` corresponds to ` columns of the
random orthogonal matrix distributed according to the Haar measure on orthogonal matrices [38]. In other
words, the columns p(j)

k are orthogonal and distributed uniformly on the sphere for all j. Then, when ` = 1,
Pk∇(Pk,h)f(xk) is a spherical smoothing estimate of the gradient, as described in, e.g., [22, 7]. For the case
` > 1 it is more common to sample p(j) independently and uniformly on the sphere [7], but in our case, to
satisfy Assumptions (P.1) and (P.2), the columns of P must be orthonormal, similar to [33]. The advantage
of a matrix P with orthonormal columns is discussed at length in [33]. We remark here that this property
is a valid extension of traditional spherical smoothing to subspaces of dimension greater than one, and is
required to obtain our results and connect Algorithm (1) with discrete gradient descent with ` = d.

Example 2.3 (Gradient descent on random subspaces). If hk = h for every k ∈ N and h → 0, then
∇(Pk,hk)f(xk) becomes P>k ∇f(xk) and the algorithm reduces to

xk+1 = xk − αkPkP>k ∇f(xk). (2.2)

For shorthand, when we reference Algorithm 1 with hk = 0, we are referring to the use of exact directional
derivatives as in recursion 2.2, which has been introduced and studied in [33]. Our analysis allows to recover
and improve on previous results for the iteration in (2.2).

3

Example 2.4 (Gradient descent). When ` = d we have PP> = P>P = Id. Hence, P is an orthonormal
basis forRd, so that discrete gradient descent and gradient descent are recovered as special cases of Algorithm
1 and recursion 2.2 respectively.

Before stating and discussing our main results, we add one remark.

Remark 2.5 (Derivative-free optimization and automatic differentiation). From a practical point of view,
the implementation of methods based on exact gradient computations, such as (2.2), is restricted to cases
where exact directional derivatives are available. Under certain conditions, one can use automatic differenti-
ation to obtain directional derivatives, however this requirement restricts the user to particular software, and
precludes experiments wherein the function is accessed only via blackbox function evaluations, as is more
common in derivative-free optimization. Importantly, the recursion based on exact gradient computations
cannot be used when the simulations are physical (such as robotics, and many engineering examples), or
when the objective can not be described by the elementary functions available to automatic differentiation
software (such as in reinforcement learning).

3 Main results

In this section, we summarize the main results of the paper. We provide convergence results, explain the
dependence on the discretization parameters hk and the choice of the stepsizes αk, and provide context for
the results within the larger body of literature. The section contains two theorems. Theorem 3.1 establishes
convergence properties of Algorithm 1 in the convex case, while Theorem 3.7 deals with objective functions
satisfying the Polyak-Łojasiewicz condition H.3 without requiring convexity. The theorems are simplified
versions of the results in Sections 5 and 6, where more detailed statements and proofs can be found.

Theorem 3.1 (Convergence - convex case). Assume that conditions H.1 and H.2 are satisfied and suppose
that P.1 and P.2 hold. Let (xk) be a random sequence generated by Algorithm 1. Set Λ := λd/`.

(i) Let 0 ≤ hk ≤ h and αk = α for some h > 0 and α ∈ (0, 1/Λ). Then, for explicit constantsC1, C2, C3

and C4,

min
j∈[k]

E(f(xj)− f∗) ≤ max{C1/(k + 1) + C2h
2

+ C3h, C2h
2

+ C4h}.

(ii) Set hk = 1/kr with r > 0 and αk = α/k with α ∈ (0, 1/Λ). Then,

lim
k
f(xk)

a.s.
= f∗

and, for an explicit constant D0 > 0,

min
j∈[k]

E [f(xj)− f∗] ≤ D0/ ln k.

(iii) Set hk = 1/kr with r > 1 and αk = α with α ∈ (0, 1/Λ). Then,

lim
k
f(xk)

a.s.
= f∗

and, for an explicit constant D > 0,

min
j∈[k]

E [f(xj)− f∗] ≤ D/k.

4

Moreover, there exists a random variable x∗ with values in argmin f such that xk
a.s.→ x∗.

(iv) Consider recursion 2.2 with αk = α and α ∈ (0, 2/Λ). Then

f(xk)− f∗
a.s.
= o (1/k)

and there exists a random variable x∗ with values in argmin f such that xk
a.s.→ x∗.

Proof. The results in (i), (ii), (iii) and (iv) are special cases of Theorems 5.2, 5.4, 5.6 and 5.12 - respec-
tively.

More detailed results - and under milder assumptions - are given in the theorems cited above. There,
for instance, one can find explicit computations of the constants C1, C2, C3, C4 and D. Some comments
on Theorem 3.1 are in order. In (i) we show the case in which the discretization hk does not decrease to
zero. We get a stability estimate for the expectation of the function values at the best iterate, depending on
the upper-bound on the error noise h. Notice that we recover the rate C1/(k + 1) as h → 0. On the other
hand, for h > 0, running the algorithm beyond a certain number of iterations does not lead to any guarantee
of improvement to the best iterate. More precisely, if we consider a stopping time proportional to 1/h, then
overall accuracy will beO(h) (assuming h ≤ 1 for simplicity). In the rest of Theorem 3.1 we require hk → 0.
In (ii) the discretization sequence is allowed to converge to zero (polynomially but) arbitrarily slowly, but
also a vanishing stepsize αk is required and the results we can obtain are quite weak: the function values
converge to the optimum with a logarithmic rate (in expectation and for the best iterate). Better results can
be obtained if hk converges to zero fast enough, as shown in (iii). In this case we gain on two different sides:
first, a constant stepsize α can be used, which is convenient from a numerical point of view; second, we get
faster convergence rates for the function values of the form 1/k (again in expectation and for the best iterate);
third, we have a.s. convergence of the iterates. To the best of our knowledge, this is the first result showing
convergence of the iterates for these types of zeroth-order methods in the general convex case; recall that
special cases of our method include several well-known methods such as coordinate descent and smoothing
on a sphere. Finally, for recursion (2.2) in (iv), we obtain an a.s. convergence rate asymptotically faster than
1/k for the last iterate (and not only for the best one). We add four remarks.

Remark 3.2. In the setting of Theorem 3.1, Λ = λd/` plays the role of the Lipschitz constant. In (iv) the
choice of stepsize is bounded above by the classical limit 2/Λ. On the other hand, as will be evident in the
proofs, (i)-(iii) require the stepsize to be bounded above by 1/Λ.

Remark 3.3. The ergodic iterate x̄k :=
(∑k

j=1 αj

)−1∑k
j=1 αjxj attains the same rates as the ones above

for the best iterate, but it is of little practical interest. Indeed, in order to apply the algorithm, f has to be
evaluated at each iterate xk and so it is possible to just keep the one that achieves the minimal value function.

Remark 3.4. Let N denote the number of function evaluations required to perform k iterations. At each
iteration Algorithm 1 uses ` + 1 function evaluations. Then N = (` + 1)k and the rates in Theorem 3.1
(i)-(iii) can be easily re-written in terms of function evaluations. The same observation holds for the results
in Theorem 3.7.

Remark 3.5 (Comparison with previous work). Here we compare to the results in the literature dealing
with a convex objective function.

• The case ` = 1 with Gaussian sampling is considered in [39] where one can find results similar to ours
in terms of convergence rates but with worse constants. See Remark 5.9 for a precise comparison.

5

• In [20] a mirror-descent variant of Algorithm 1 is proposed to deal with a stochastic objective, similar
to the setting in [30]. A rate O(1/

√
k) in expectation is derived, however the results should not be

compared directly to our related results in (iii), as the setting is more challenging. See Remark 5.10.
• In [33] only the setting (iv) is studied. Stricter assumptions are required (e.g., existence of a finite R
such that

max
x∗

max
x
{‖x− x∗‖ : f(x) ≤ f(x0)} ≤ R,

and only convergence in expectation is provided. The special case of parallel coordinate descent has
been considered in [52] and [49].

The following Corollary considers the case where the algorithm is run for a finite number of iterations
known a priori.

Corollary 3.6. Under the assumptions of Theorem 3.1 (i), letK ∈ N and h ≤ 1/K. Then, for some constant
C,

min
j∈[K]

E(f(xj)− f∗) ≤ C/K. (3.1)

In particular, given a tolerance ε > 0, it is possible to choose a number of iteration K ∈ N such that
C/K ≤ ε and a discretization h ≤ 1/K, in order to get

min
j∈[K]

E(f(xj)− f∗) ≤ ε. (3.2)

Next we state and discuss a second set of results derived under different assumptions on the objective
function. It is well-known that first order methods exhibit favorable convergence results for strongly convex
functions. More recently, it has been proved that improved convergence rates can also be obtained when the
objective function satisfies weaker geometrical assumptions that do not require convexity [2, 29]. In this
paper we consider the (global) Polyak-Łojasiewicz condition:

(H.3) the function f is γ-PL; namely, for every x ∈ Rd,

‖∇f(x)‖ 2 ≥ γ (f(x)− f∗) .

The main example of functions satisfying the global PL condition is the class of strongly convex functions.
For more examples in the non-convex setting, see [2] and the numerical experiments in Section 7. We stress
again that in the next result we assume H.3 but not H.2; that is, we do not require convexity of the objective
function.

Theorem 3.7 (Convergence - PL case). Assume that conditions H.1 and H.3 are satisfied and suppose
that P.1 and P.2 hold. Let (xk) be a random sequence generated by Algorithm 1. Set Λ := λd/` and let
α ∈ (0, 2/Λ). Fix a constant w ≤ 1 such that 0 < w < 2− Λα, and define η := 1− wαγ/2.

(i’) Set hk ≤ h for some h > 0 and αk = α. Then, for an explicit constant C1 > 0,

E [f(xk)− f∗] ≤ ηk (f(x0)− f∗) + C1 h
2
[
1− ηk

]
.

(ii’) Set hk = 1/kr with r > 0 and αk = α. Then, there exists a constant C2 > 0 such that

E [f(xk)− f∗] ≤ C2/k
2r.

6

(iii’) Set hk =
√
ηk/kr with r > 1 and αk = α. Then, for an explicit constant C2 > 0,

E [f(xk)− f∗] ≤ C2η
k.

(iv’) Consider recursion (2.2) with αk = α. Then,

E [f(xk)− f∗] ≤ ηk (f(x0)− f∗) .

Proof. The results in (i′), (ii′) and (iii′) are special cases of Theorems 6.2, 6.4 and 6.8 - respectively; while
the result in (iv′) is presented here for completeness but is already considered in [33] - see Corollary 2.3.

Sharper and more detailed results are given in the theorems cited above, where the reader can also find
the explicit computations of the constants involved in the rates. We remark only that, for a constant stepsize
αk = 1/Λ, the decreasing rate in (i′), (ii′) and (iii′) is given by η = 1− γ/(2Λ). As a general comparison
with Theorem 3.1, note that the results in Theorem 3.7 do not involve the best iterate but only the last one.
As in the first result of Theorem 3.1, in Theorem 3.7 (i′) the parameter hk does not necessarily vanish
and so the error produced by the finite difference discretization of the gradient does not converge to zero.
This explains the substantial difference between this result and the ones in (ii′)-(iv′): in the upper-bound of
(i′), for k → +∞ the right-hand side does not vanish. We can only guarantee that the expectation of the
function evaluations converges with a linear rate to a sublevel set of f with value f∗+C1h

2, also called error
dominated region. On the other hand note that, in comparison with Theorem 3.1 (i), the upper-bound does
not diverge with the iterations but it remains bounded. In (iii′), we study the case of polynomial decay of the
discretization parameter; namely, a decay of the form hk = 1/kr with r > 0. In this case, the upper-bound
is proportional to 1/k2r and the rate gets better for a faster decay of the discretization parameter. In (iii′),
under the assumption of a sufficiently fast (exponential) decay of hk and with a constant stepsize αk, we get
a linear rate of convergence to the optimal value. Finally in (iv′), for the recursion in (2.2) with αk constant,
we recover the linear rate already shown in [33]. We add three remarks.

Remark 3.8 (Stepsize bounds). Following the same discussion as in Remark 3.2, in all the results of The-
orem 3.7 the stepsize must be bounded above by the classical limit 2/Λ.

Remark 3.9 (Adaptivity). An important consequence of the analysis in the previous theorems is that Algo-
rithm 1 is adaptive; that is, knowledge of the specific properties of f is not needed to ensure the corresponding
convergence results. We give an explicit example. Consider an objective for which assumptions H.1, H.2
are satisfied and we run the algorithm with hk = 1/kr for r > 1 and αk = α for α ∈ (0, `/(λd)). Then
the results in Theorem 3.1 (iii) hold; namely, we have convergence of the iterates, almost sure convergence
of the function values and a 1/k rate for the best iterate in expectation. In the same setting, if the function
satisfies the PL inequality (H.3), from Theorem 3.7 (ii′) we get automatically a 1/k2r rate for the last iterate
in expectation.

Remark 3.10 (Almost sure convergence). Under the assumptions of Theorem 3.7 (ii′), we have that
E [f(xk)− f∗] . C2/k

2r. Then, If r > 1/2 the right hand side is summable and, by Markov’s inequality
and Borel-Cantelli Lemma, f(xk)

a.s.→ f∗, so that d(xk)
a.s.→ 0. In particular, if the function f has a unique

minimizer x∗, xk
a.s.→ x∗. Analogous reasoning holds for Theorem 3.7 (iii′) and (iv′).

Finally, the following Corollary considers the case where the algorithm is run for a finite number of iter-
ations known a priori.

7

Corollary 3.11. Under the assumptions of Theorem 3.7 (i′), letK ∈ N and h ≤ ηK/2. Then,

E [f(xK)− f∗] ≤ (f(x0)− f∗ + C1) ηK . (3.3)

Moreover, if d(·) is the Euclidean distance of the argument to the set argminx f , then

E d(xK) ≤ 2

γ
(f(x0)− f∗ + C1) ηK .

Proof. The first result follows directly from the assumption h ≤ ηK/2 and Theorem 3.7 (i′). The second
claim follows from the previous one and the following inequality, that holds under H.3 - see e.g. [11]: for
every x ∈ Rd, d(x) ≤ 2/γ (f(x)− f∗) .

Equation (3.3) allows for a solution minimizing f up to an arbitrary desired accuracy ε > 0 in expectation.
To this aim it is sufficient to choose

K =
ln
(
ε/(f(x0)− f∗ + C1)

)
ln η

and h ≤ ηK/2.

Note that the dependence on the number of iterations is logarithmic in ε. A similar observation holds for
Ed(xK). If f has a unique minimizer x∗ (e.g. f is strongly convex) Corollary 3.11 provides a convergence
rate for the iterates to the minimizer.

In the next sections we provide more detailed statements and proofs of the results. We start with some
useful preliminary results that are the basis for the development in later sections.

4 Preliminaries

4.1 Notation and stepsize assumptions

For k ∈ N, we define

fk := f(xk), ∇fk := ∇f(xk), ∇kfk := ∇(Pk,hk)f(xk).

Now we provide the main conditions on the parameters of the proposed algorithm. Setting Λ := λd/`,
the assumptions we consider on the sequences of stepsizes (αk) and discretizations (hk) are as follows:

(A.1) 0 < αk ≤ α < 2/Λ;
(A.2) 0 < αk ≤ α < 1/Λ;
(A.3) (αk) /∈ `1 and (hk) is bounded above by some h ≥ 0;
(A.4) (αk) is bounded below by some α > 0 and (hk) is bounded above by some h ≥ 0.

Note that A.2 implies A.1 while A.4 implies A.3. Also note that Λ plays a role analogous to the Lipschitz
constant in classical gradient descent, and Λ = λ when ` = d.

4.2 Auxiliary bound

We start the analysis with an auxiliary lemma that estimates the distance between the surrogate of the gradient
used in the algorithm and the projected exact gradient. For this first result we assume only Lipschitz continuity
of the gradient and condition P.1 on the matrix Pk; in particular, convexity of f is not needed. The upper-
bound is a simple consequence of the Descent Lemma 9.2 and the proof is in the appendix.

8

Lemma 4.1. Let f be a function satisfying H.1 and Pk ∈ Rd×` a random matrix satisfying P.1. Then, for
every x ∈ Rd and every k ∈ N,∥∥∥∇(Pk,hk)f(x)− P>k ∇f(x)

∥∥∥ ≤ λdhk

2
√
`

a.s.

Remark 4.2 (Discussion on the bias). Consider a sufficiently regular function f : Rd → R. Fix h > 0,
` = 1 and a Rd-valued random vector p satisfying Assumptions P.1-P.2; namely,

‖p‖ a.s.
=
√
d and E

[
pp>

]
= I.

For every x ∈ Rd, by Taylor expansion we have that

E
[
∇(p,h)f(x)

]
= E

[
f(x+ hp)− f(x)

h
p

]
(4.1)

= ∇f(x) +
h

2
E
[
〈∇2f(x)p, p〉 p

]
+
h2

6
E
[
〈
[
∇3f(x)p

]
p, p〉 p

]
+ o(h2).

We focus on two fundamental choices for the distribution of p.

• In the coordinate-wise framework, p is distributed uniformly on the (discrete) set (
√
d ei)

d
i=1 ∪

(−
√
d ei)

d
i=1, where ei represents the i-th vector of the canonical basis. Then the first-order term

in (4.1) is zero:

E
[
〈∇2f(x)p, p〉 p

]
=

1

2d

d∑
i=1

〈∇2f(x)
√
d ei,
√
d ei〉

√
d ei

− 1

2d

d∑
i=1

〈∇2f(x)
√
d ei,
√
d ei〉

√
d ei = 0.

• The same holds for spherical smoothing, where p is distributed uniformly on the (continuous) set given
by the sphere of radius

√
d and centered at the origin, that we denote by ∂B. Also in this case, indeed,

E
[
〈∇2f(x)p, p〉 p

]
=

∫
∂B
〈∇2f(x)p, p〉 p dp = 0,

as we are integrating an odd function on a domain that is symmetric with respect to the origin.
So, in the sufficiently regular case analysed above, the surrogate gradient proposed by coordinate-wise and
spherical smoothing is unbiased up to the first-order term in h. But notice also that, in both cases, the term in
h2 is non-zero in general and the surrogate gradient is biased. This excludes the direct applicability of many
theoretical studies for general stochastic algorithms such as [9] and motivates the introduction of Lemma 9.2,
in which we bound a.s. the distance between the surrogate gradient and the projection of the exact one. On
the other hand, the case of quadratic functions - in which both coordinate-wise and spherical smoothing are
unbiased - deserves a tailored convergence analysis that we leave for future work. For refined properties of
spherical smoothing and coordinate-wise descent, see [7] and Lemma 1, Remark 1 in [33].

9

4.3 A quasi-descent lemma

In the next proposition and corollary we obtain an a.s. estimate for the decrease of the objective function
values. This result is the fundamental tool for the analysis in Section 6, and it is also of standalone interest.

Proposition 4.3. Assume H.1, P.1 and A.1 and let the random sequence (xk) be generated by Algorithm 1.
Fix a constant w such that 0 < w < 2 − Λα and w ≤ 1. Define C := (`Λ2)/(8 min (1, 2− Λα− w)).
Then, for every k ∈ N,

fk+1 − fk ≤ −
wαk

2
‖P>k ∇fk‖2 + Cαkh

2
k a.s.

In particular, fk+1 − fk ≤ Cαkh2
k a.s.

Before showing the proof of Proposition 4.3, we make some comments on the assumptions and conclusion
and provide an important consequence under additional assumptions. First note that Proposition4.3 requires
neither P.2 nor H.2-H.3. The difference fk+1− fk is bounded a.s. by the sum of two terms: a negative term
depending on the squared norm of the projected gradient P>k ∇fk and an error term proportional to αkh2

k.

Remark 4.4. Notice that the term mutiplying ‖P>k ∇fk‖2 does not depend on hk. A result analogous to
Proposition 4.3 can be obtained for recursion (2.2), corresponding to the limit h→ 0. In this case, for every
k ∈ N,

fk+1 − fk ≤ −
wαk

2
‖P>k ∇fk‖2 a.s.

In particular, the objective function values are a.s. decreasing; namely, fk+1 ≤ fk a.s. This fact is used later,
in the proof of Theorem 5.12.

Finally, adding condition A.4 to the hypothesis of Proposition 4.3, we get the following corollary.

Corollary 4.5. Assume H.1, P.1, A.1 and A.4. Let (xk) be a random sequence generated by Algorithm 1.
Let 0 < w < 2− Λα and w ≤ 1. Then, for every k ∈ N,

fk+1 − fk ≤ −
wα

2
‖P>k ∇fk‖2 + Cαh

2
a.s. (4.2)

Proof of Proposition 4.3. For notational simplicity, we denote Pk by P and set ek := ∇kfk −P>k ∇fk. By
Assumption P.1, for every v ∈ R`,

‖Pv‖ 2 a.s.
=
d

`
‖v‖ 2. (4.3)

By Hypothesis H.1 combined with Descent Lemma 9.2 and Algorithm 1, we obtain

fk+1 − fk ≤ 〈∇fk, xk+1 − xk〉+
λ

2
‖xk+1 − xk‖2

= −αk〈P>∇fk,∇kfk〉+
α2
kλ

2
‖P∇kfk‖2.

(4.4)

For the last term, we add and subtract PP>∇fk and recall the definition of ek, to get

α2
kλ

2
‖P∇kfk‖2 =

α2
kλ

2
‖P∇kfk − PP>∇fk + PP>∇fk‖2

=
α2
kλ

2
‖Pek‖2 +

α2
kλ

2
‖PP>∇fk‖2 + α2

kλ〈Pek, PP>∇fk〉.

10

Now, using again the algorithm and relation (4.3) in inequality (4.4), we have

fk+1 − fk ≤ −αk〈P>∇fk,∇kfk〉

+
α2
kλd

2`
‖ek‖2 +

α2
kλd

2`
‖P>∇fk‖2 +

α2
kλd

`
〈∇kfk − P>∇fk, P>∇fk〉

= αk (Λαk − 1) 〈P>∇fk,∇kfk〉+
Λα2

k

2
‖ek‖2 −

Λα2
k

2
‖P>∇fk‖2,

where we recall that Λ is defined as Λ := λd/`. Write ∇kfk = ek + P>∇fk, to get

fk+1 − fk ≤ αk (Λαk − 1) 〈P>∇fk, ek + P>∇fk〉

+
Λα2

k

2
‖ek‖2 −

Λα2
k

2
‖P>∇fk‖2

= αk (Λαk − 1) 〈P>∇fk, ek〉+
Λα2

k

2
‖ek‖2 + αk

(
Λαk

2
− 1

)
‖P>∇fk‖2.

By Young’s inequality with parameter τk and the estimate of ‖ek‖ from Lemma 4.1,

fk+1 − fk ≤
αk
2τk
|Λαk − 1| ‖P>∇fk‖2 +

αkτk
2
|Λαk − 1| ‖ek‖2 +

Λα2
k

2
‖ek‖2

+ αk

(
Λαk

2
− 1

)
‖P>∇fk‖2

≤ −αk
(

1− Λαk
2
− 1

2τk
|Λαk − 1|

)
‖P>∇fk‖2

+
αk
2

(τk |Λαk − 1|+ Λαk)
λ2h2

kd
2

4`
.

If αk ≤ 1/Λ, choosing τk = 1, we obtain

αk

(
1− Λαk

2
− 1

2τk
|Λαk − 1|

)
=
αk
2
≥ wαk

2
(4.5)

and

(ωk |Λαk − 1|+ Λαk)
αkλ

2h2
kd

2

8`
=
`Λ2

8
αkh

2
k ≤ Cαkh2

k. (4.6)

Similarly, if 1/Λ < αk ≤ α < 2/Λ, choose τk = Λαk−1
2−Λαk−w . Notice that τk > 0 because Λαk − 1 > 0 and

0 < w < 2− Λα ≤ 2− Λαk.

Then,

αk

(
1− Λαk

2
− 1

2τk
|Λαk − 1|

)
=
wαk

2
,

and, since 1− wΛαk ≤ 1,

(τk |Λαk − 1|+ Λαk)
αkλ

2h2
kd

2

8`
=

(
1− wΛαk

2− Λαk − w

)
`Λ2

8
αkh

2
k ≤ Cαkh2

k.

11

Remark 4.6. If the stepsize satisfies αk ≤ 1/Λ for every k ∈ N (instead of the weaker condition αk < 2/Λ
from Assumption A.1), it is clear from the proof that the result in Proposition 4.3 reduces to

fk+1 − fk ≤ −
αk
2
‖P>k ∇fk‖2 +

`Λ2

8
αkh

2
k a.s.

An analogous result holds for Corollary 4.5.

5 Convex case

In this section we study the case of convex objective functions. First, in Lemma 5.1 we derive a key prelimi-
nary result establishing a stochastic Fejér monotonicity property for ourmethod. Using this Lemmawe derive
convergence results for different parameter choices. In Section 5.2 we consider the case of a non-vanishing
discretization. Then, in Section 5.3, and 5.4 we consider two different regimes where the discretization is
made finer as the iteration proceeds, considering both a more and a less aggressive strategy. Finally, in Sec-
tion 5.5 we consider the limit case where no discretization is considered, namely recursion 2.2. Throughout
this section we use the filtration Fk = σ(P1, . . . , Pk−1).

5.1 Fejér monotonicity

We derive an a.s. energy estimate for the Lyapunov sequence
(
‖xk − x∗‖2

)
, where (xk) is the random

sequence generated by Algorithm 1 and x∗ is any minimizer of f .

Lemma 5.1. AssumeH.1,H.2 and P.1, P.2. Let (xk) be a random sequence generated by Algorithm 1. Then,
for every k ∈ N and x∗ ∈ argmin f ,

E
[
‖xk+1 − x∗‖ 2

∣∣Fk]− (1 +
αkhkd

2

2`
√
`

)
‖xk − x∗‖ 2

a.s.
≤ Dk +

2d

`
α2
k ‖∇fk‖ 2 + 2αk〈∇fk, x∗ − xk〉,

where Λ := λd/` and

Dk : =
Λ2

2

[
d (αkhk)

2 +
√
` (αkhk)

]
. (5.1)

Lemma 5.1 is the fundamental inequality used in the remainder of this section. We combine it with
another important ingredient, that is the cocoercivity of∇f (see the Baillon-Haddad Theorem, Lemma 9.1)
which allows us to show that the sequence

(
‖xk − x∗‖2

)
is stochastically Fejér monotone up to the error

generated at each iteration by Dk. Under different assumptions on the stepsize and discretization sequences
the sequence (xk) exhibits different behaviors in terms of optimization and convergence rates.

Proof. Recall the notation ∇kfk := ∇(Pk,hk)f(xk). Lemma 4.1 provides an estimate for ‖ek‖, where
ek := ∇kfk − Pk∇f(xk). By Assumption P.1, for every v ∈ R`,

‖Pkv‖2
a.s.
=
d

`
‖v‖2 ; (5.2)

12

and, by P.2, for every fixed w ∈ Rd,

E
[∥∥∥P>k w∥∥∥2 ∣∣Fk] = ‖w‖2 . (5.3)

Thus, for every x∗ ∈ argmin f and every k ∈ N, the following equality holds a.s.

‖xk+1 − x∗‖ 2 − ‖xk − x∗‖ 2

= ‖xk+1 − xk‖ 2 + 2〈xk+1 − xk, xk − x∗〉
(Alg. 1) = α2

k ‖Pk∇kfk‖ 2 − 2αk〈Pk∇kfk, xk − x∗〉

= α2
k

∥∥∥Pk∇kfk − PkP>k ∇fk + PkP
>
k ∇fk

∥∥∥ 2 + 2αk〈∇fk, x∗ − xk〉

+2αk〈PkP>k ∇fk −∇fk, x∗ − xk〉
+2αk〈Pk∇kfk − PkP>k ∇fk, x∗ − xk〉.

Using the fact that (x+ y)2 ≤ 2x2 + 2y2 and the Cauchy-Schwarz inequality, we get

‖xk+1 − x∗‖ 2 − ‖xk − x∗‖ 2

≤ 2α2
k ‖Pkek‖ 2 + 2α2

k

∥∥∥PkP>k ∇fk∥∥∥ 2 + 2αk〈∇fk, x∗ − xk〉

+2αk〈PkP>k ∇fk −∇fk, x∗ − xk〉+ 2αk ‖Pkek‖ ‖x∗ − xk‖ .

Then, by P.1 and Lemma 4.1,

‖xk+1 − x∗‖ 2 − ‖xk − x∗‖ 2

≤
2α2

kd (λhkd)2

4`2
+

2α2
kd

`

∥∥∥P>k ∇fk∥∥∥ 2 + 2αk〈∇fk, x∗ − xk〉

+2αk〈PkP>k ∇fk −∇fk, x∗ − xk〉+
αkλhkd

2

`
√
`
‖x∗ − xk‖ .

(5.4)

Finally,

‖xk+1 − x∗‖ 2 − ‖xk − x∗‖ 2

≤ d3λ2

2`2
(αkhk)

2 +
2d

`
α2
k

∥∥∥P>k ∇fk∥∥∥ 2 + 2αk〈∇fk, x∗ − xk〉

+2αk〈PkP>k ∇fk −∇fk, x∗ − xk〉+
λ2d2 (αkhk)

2

2`
√
`αkhk

+
αkhkd

2

2`
√
`
‖x∗ − xk‖ 2,

where we used Young inequality with parameter (αkhkd
2)/(`

√
`). Taking the conditional expectation given

Fk and using Assumption P.2, we get the claim. For integrability considerations, see Remark 9.12.

Given the above inequality, we next derive a number of different convergence results considering different
choices of the discretization parameter and the stepsize.

13

5.2 Non-vanishing dicretization

Using an intermediate estimate from the proof of Lemma 5.1, we get the following result: with only a bound-
edness assumption on the discretization sequences, we derive an upper bound on the expectation of the func-
tion values for the best iterate.

Theorem 5.2. AssumeH.1,H.2, P.1, P.2 andA.2. Let (xk) be a random sequence generated by Algorithm 1.
Then, for every k ∈ N,

min
j∈[k]

E(fj − f∗) ≤
D̃k∑k
j=0 αj

,

where

D̃k : =
d+ ξ`

2ξ`

Sk +

k∑
j=0

ρj

(√
Sj−1 +

j∑
i=0

ρi

) ,
with ξ := 1

λ −
dα
` > 0, ρi := λd2

`
√
`

(αihi) and Sj := ‖x0 − x∗‖ 2 +
∑j

i=0
Λ2

2 (αihi)
2. In particular, for

αk = α and hk ≤ h, we get

min
j∈[k]

E(fj − f∗) ≤ max{C1/(k + 1) + C2h
2

+ C3h, C2h
2

+ C4h},

where we made explicit only the dependence on the iteration number k and the bound on the discretization
error h, while C1, C2 and C3 are appropriate constants derived from the proof.

The above result is an extended version of Theorem 3.1(i). As mentioned after Theorem 3.1, it suggests
that the accuracy will stop improving after a given number of iterations depending on the discretization level.
The proof follows.

Proof. Start from the inequality in 5.4. Recalling that we defined ρj := λd2

`
√
`

(αjhj), for every j ∈ N we
have that

‖xj+1 − x∗‖ 2 − ‖xj − x∗‖ 2 ≤ Λ2

2
(αjhj)

2 +
2d

`
α2
j

∥∥∥P>j ∇fj∥∥∥ 2 + 2αj〈∇fj , x∗ − xj〉

+ 2αj〈PjP>j ∇fj −∇fj , x∗ − xj〉+ ρj ‖x∗ − xj‖

(Baillon-Haddad Theorem 9.1) ≤ Λ2

2
(αjhj)

2 +
2d

`
αj

∥∥∥P>j ∇fj∥∥∥ 2 − 2

λ
αj ‖∇fj‖ 2

+ 2αj〈PjP>j ∇fj −∇fj , x∗ − xj〉+ ρj ‖x∗ − xj‖ .

Taking expectations in the previous bound and denoting uj :=
√

E ‖xj − x∗‖2, we get that for every j ∈ N

u2
j+1 − u2

j ≤
Λ2

2
(αjhj)

2 +
2d

`
α2
jE
[
‖∇fj‖ 2

]
− 2

λ
αjE

[
‖∇fj‖ 2

]
+ ρjE

√
‖x∗ − xj‖ 2

≤ Λ2

2
(αjhj)

2 − 2ξαjE
[
‖∇fj‖ 2

]
+ ρjuj ,

14

where we recall that ξ := 1
λ −

dα
` > 0. Then, summing from j = 0 to j = k,

u2
k+1 + 2ξ

k∑
j=0

αjE
[
‖∇fj‖ 2

]
≤ u2

0 +
k∑
j=0

Λ2

2
(αjhj)

2

︸ ︷︷ ︸
=Sk

+
k∑
j=0

ρjuj ,

and

k∑
j=0

αjE
[
‖∇fj‖ 2

]
≤ 1

2ξ

Sk +
k∑
j=0

ρjuj

 (5.5)

and, by discrete Bihari’s Lemma 9.8, for every j ∈ N

uj ≤
1

2

j∑
i=0

ρi +

Sj−1 +

(
1

2

j∑
i=0

ρi

)2
1/2

≤
√
Sj−1 +

j∑
i=0

ρi. (5.6)

Starting again from the intermediate inequality in 5.4, for every j ∈ N,

‖xj+1 − x∗‖ 2 − ‖xj − x∗‖ 2 ≤ Λ2

2
(αjhj)

2 +
2d

`
α2
j

∥∥∥P>j ∇fj∥∥∥ 2 + 2αj〈∇fj , x∗ − xj〉

+ 2αj〈PjP>j ∇fj −∇fj , x∗ − xj〉+ ρj ‖x∗ − xj‖

(convexity) ≤ Λ2

2
(αjhj)

2 +
2d

`
αj

∥∥∥P>j ∇fj∥∥∥ 2 − 2αj(fj − f∗)

+ 2αj〈PjP>j ∇fj −∇fj , x∗ − xj〉+ ρj ‖x∗ − xj‖ .

Taking expectations, we get

u2
j+1 − u2

j + 2αjE(fj − f∗) ≤
Λ2

2
(αjhj)

2 +
2d

`
αjE

[
‖∇fj‖ 2

]
+ ρjuj .

Summing from j = 0 to j = k, we conclude the first claim:

u2
k+1 + 2

k∑
j=0

αjE(fj − f∗) ≤ Sk +
2d

`

k∑
j=0

αjE
[
‖∇fj‖ 2

]
+

k∑
j=0

ρjuj

(5.5) ≤ Sk +
d

ξ`

Sk +

k∑
j=0

ρjuj

+

k∑
j=0

ρjuj

=
d+ ξ`

ξ`

Sk +
k∑
j=0

ρjuj

(5.6) ≤ d+ ξ`

ξ`

Sk +
k∑
j=0

ρj

(√
Sj−1 +

j∑
i=0

ρi

)
= 2D̃k.

15

For the second claim, for αk = α and hk ≤ h, define ρ := λd2

`
√
`

(
αh
)
and note that

D̃k ≤
d+ ξ`

2ξ`

‖x0 − x∗‖ 2 +

k∑
j=0

Λ2

2
(αjhj)

2 + ‖x0 − x∗‖
k∑
j=0

ρj

+

k∑
j=0

ρj

(
j∑
i=0

Λ√
2

(αihi)

)
+

k∑
j=0

ρj

(
j∑
i=0

ρi

)
≤ d+ ξ`

2ξ`

‖x0 − x∗‖ 2 +
Λ2

2
α2h

2
k∑
j=0

1 + ρ ‖x0 − x∗‖
k∑
j=0

1

+
Λ√
2
αhρ

k∑
j=0

j∑
i=0

1 + ρ2
k∑
j=0

j∑
i=0

1

≤ C̃1 + C̃2h

2
(k + 1) + C̃3h(k + 1) + C̃4h

2
(k + 1)(k + 2),

where C̃1, ..., C̃4 are appropriate constants. Recalling thatαk is assumed to be constant and so that
∑k

j=0 αj =
α(k + 1), by trivial manipulations we get that

min
j∈[k]

E(fj − f∗) ≤
C̄1

k + 1
+ C̄2(h+ h

2
) + C̄3h

2
k,

where C̄1, C̄2 and C̄3 are again appropriate constants. We conclude simply by noticing that, for k ≤ 1/h,
the right hand side is bounded by C̄1/(k + 1) + C̄2(h + h

2
) + C̄3h; while, for k > 1/h, the sequence

minj∈[k] E(fj − f∗) is non-increasing in k and so controlled by the bound at k = 1/h, that is C̄1/(1/h +

1) + C̄2(h+ h
2
) + C̄3h ≤ (C̄1 + C̄2 + C̄3)h+ C̄2h

2.

Remark 5.3. The case of a single random direction at each iterations (` = 1) sampled from a normal
distribution is studied in [39, 40]. Under Hypothesis H.1 and H.2, [40, Theorem 8] states the following
result: taking constant αk = 1

4λ(d+4) and hk = h,

min
j∈[k]

E [f(xj)− f∗] ≤
4λ (d+ 4) ‖x0 − x∗‖ 2

k
+

9λh2 (d+ 4)2

25
. (5.7)

Comparing this bound with the one obtained in Theorem 5.2, we see that this is tighter. The main difference
between the two approaches is due to the sampling of the random direction. The one adopted in [40], is
such that the expectation of the finite difference approximation of the directional derivative is the gradient
of a (Gaussian) smoothing of f , while such a property does not hold under our assumptions, and a different
proof is needed. We will see in Remark 5.9, that the different bounds lead to very similar results in terms of
accuracy if the discretization error in our method is allowed to go to zero.

Next, we develop our analysis for the case of a decreasing sequence of discretization parameters (hk)
which allows for a finer discretization and an increasingly accurate approximation of the exact gradient.

16

5.3 Basic results with coarser discretization

We begin considering very mild assumptions on the speed at which the discretization sequence vanishes.
Using Lemma 5.1 we prove a.s. convergence for the function value of the best iterate, as well as a sublinear
rate in expectation. The following result is an extended version of item (ii) in Theorem 3.1.

Theorem 5.4. AssumeH.1,H.2, P.1, P.2,A.2 andA.3. Assume also that (αkhk) ∈ `1. Let (xk) be a random
sequence generated by Algorithm 1. Then,

lim
k
f(xk)

a.s.
= f∗.

Moreover, we have the following convergence rate for the best iterate in expectation:

min
j∈[k]

E [fj − f∗] ≤ D∑k
j=0 αj

,

where the constant D > 0 is provided in the proof.

Example 5.5. For every k ∈ N let hk = h/kr and αk = α/ks. Let α ∈ (0, 1/Λ), h > 0 and s ≥ 0 with
r > 1−s ≥ 0. Then (αk) /∈ `1, (αkhk) ∈ `1, so the assumptions of Theorem 5.4 are satisfied. For example,
the latter holds for αk = α/k and hk = h/kr with r > 0 (αk vanishing and hk going to zero arbitrarily
slow); or for αk = α and hk = h/kr with r > 1 (αk constant and hk going to zero sufficiently fast).

Proof. Consider the inequality from Lemma 5.1, namely

Ek ‖xk+1 − x∗‖ 2−
(

1 +
αkhkd

2

2`
√
`

)
‖xk − x∗‖ 2

≤ Dk +
2d

`
α2
k ‖∇fk‖ 2 + 2αk〈∇fk, x∗ − xk〉

(cocoercivity of∇f, see Thm. 9.1) ≤ Dk +
2d

`
α2
k ‖∇fk‖ 2 − 2αk

λ
‖∇fk‖ 2

(A.2) ≤ Dk + 2αk

(
dα

`
− 1

λ

)
‖∇fk‖ 2

= Dk − 2ξαk ‖∇fk‖ 2,

(5.8)

where we defined ξ := 1
λ −

dα
` > 0. By the assumptions, (αkhk) ∈ `1 and so (Dk) ∈ `1. Using Robbins-

Siegmund Lemma 9.11, we know that (‖xk − x∗‖) is a.s. convergent for every x∗ ∈ argmin f and that
a.s. (

αk ‖∇fk‖ 2
)
∈ `1.

By Lemma 5.1,

Ek
[
‖xk+1 − x∗‖ 2

]
−
(

1 +
αkhkd

2

2`
√
`

)
‖xk − x∗‖ 2

≤ Dk +
2d

`
α2
k ‖∇fk‖ 2 + 2αk〈∇fk, x∗ − xk〉

(convexity of f andA.2) ≤ Dk +
2dα

`
αk ‖∇fk‖ 2 − 2αk (fk − f∗) .

(5.9)

17

By the Robbins-Siegmund Lemma 9.11, we get that a.s.

(αk (fk − f∗)) ∈ `1. (5.10)

We know that fk ≥ f∗ and, by Assumption A.3, the sequence (αk) is positive and does not belong to `1. So,

lim inf
k

f(xk)
a.s.
= f∗. (5.11)

Recall that, from Proposition 4.3, we have that

fk+1 − fk ≤ Cαkh2
k a.s.

By the assumptions (αkhk) ∈ `1 and hk bounded, we know that also (αkh
2
k) belongs to `1. Then, from

Lemma 9.7, fk is a.s. convergent. This implies, joint with 5.11, that limk f(xk)
a.s.
= f∗.

For the convergence rate, first take the total expectation in (5.8),

E ‖xj+1 − x∗‖ 2 −
(

1 +
αkhkd

2

2`
√
`

)
E ‖xj − x∗‖ 2 + 2ξαjE ‖∇fj‖ 2 ≤ Dj .

Applying Lemma 9.7 to the deterministic sequence
(
E
[
‖xk − x∗‖ 2

])
we get convergence for every x∗ ∈

argmin f (and so the sequence is bounded above by some constant C(x∗)). Moreover, summing from j = 0
to j = k,

k∑
j=0

αjE ‖∇fj‖ 2 ≤ 1

2ξ

k∑
j=0

(
E ‖xj − x∗‖ 2 − E ‖xj+1 − x∗‖ 2

)
+
C(x∗)d

2

4ξ`
√
`

k∑
j=0

αjhj +
1

2ξ

k∑
j=0

Dj

=
1

2ξ

(
E ‖x0 − x∗‖ 2 − E ‖xk+1 − x∗‖ 2

)
+
C(x∗)d

2

4ξ`
√
`

k∑
j=0

αjhj +
1

2ξ

k∑
j=0

Dj

≤ 1

2ξ

‖x0 − x∗‖ 2 +
C(x∗)d

2

2`
√
`

+∞∑
j=0

αjhj +

+∞∑
j=0

Dj

 .

(5.12)

Taking the total expectation in inequality (5.9) and recalling that E
[
‖xk − x∗‖ 2

]
is bounded above by some

constant C(x∗), we get that, for every j ∈ N,

αj E (fj − f∗) ≤
1

2
E ‖xj − x∗‖ 2 − 1

2
E ‖xj+1 − x∗‖ 2 +

C(x∗)d
2

4`
√
`

αjhj

+
Dj

2
+
dα

`
αjE ‖∇fj‖ 2.

18

Summing from j = 0 to j = k,

k∑
j=0

αj E (fj − f∗)

≤ 1

2
E ‖x0 − x∗‖ 2 − 1

2
E ‖xk+1 − x∗‖ 2 +

C(x∗)d
2

4`
√
`

k∑
j=0

αjhj

+
1

2

k∑
j=0

Dj +
dα

`

k∑
j=0

αjE ‖∇fj‖ 2

(5.12) ≤ 1

2
‖x0 − x∗‖ 2 +

C(x∗)d
2

4`
√
`

+∞∑
j=0

αjhj +
1

2

+∞∑
j=0

Dj

+
dα

2ξ`

‖x0 − x∗‖ 2 +
C(x∗)d

2

2`
√
`

+∞∑
j=0

αjhj +

+∞∑
j=0

Dj

=

ξ`+ dα

2ξ`

‖x0 − x∗‖ 2 +
C(x∗)d

2

2`
√
`

+∞∑
j=0

αjhj

+
Λ2

2

+∞∑
j=0

[
d (αjhj)

2 +
√
` (αjhj)

]
≤ 1

2 (1− Λα)

‖x0 − x∗‖ 2 +
1

2

(
C(x∗)d

2

`
√
`

+ Λdh+ Λ2
√
`

) +∞∑
j=0

αjhj

=: D < +∞.

We obtain the bound by noticing that

min
j∈[k]

E [fj − f∗]
k∑
j=0

αj ≤
k∑
j=0

αj E (fj − f∗) .

5.4 Improved results with finer discretization

We next make stronger assumptions on the sequences (αk) and (hk) allowing us to derive an a.s. convergence
result for the function values and a.s. convergence of the iterates to a solution. The following result is an
extended version of Theorem 3.1 (iii).

Theorem 5.6. Under the same conditions as in Theorem 5.4, but with the stronger Assumption A.4 instead
of A.3. Namely, assume H.1, H.2, P.1, P.2 and 0 < α ≤ αk ≤ α < 1/Λ and (hk) ∈ `1. Let (xk) be a
sequence generated by Algorithm 1. Then,

lim
k
fk

a.s.
= f∗

and there exists a random variable x∗ with values in argmin f such that xk
a.s.→ x∗.

19

Example 5.7. For every k ∈ N, let αk = α constant in (0, 1/Λ) and hk = h/kr with h > 0 and r > 1.
Then the assumptions of Theorem 5.6 hold. These conditions are a special case of those in Example 5.5. In
general, under Assumption A.4 (required for Theorem 5.6), the stepsize αk is uniformly bounded below by
a strictly positive constant and so it can not converge to zero. Then, to get the condition (αkhk) ∈ `1, hk
can not converge to zero arbitrarily slowly as in Example 5.5. Indeed, for Theorem 5.6 to hold with hk of the
form h/kr, hk has to converge to zero strictly faster than 1/k.

Remark 5.8. Under the assumptions in Theorem 5.6, the convergence rate in Theorem 5.4 holds and reads
as

min
j∈[k]

E [fj − f∗] ≤ D

αk
.

Proof. From the proof of the previous theorem, we see that for everyx∗ ∈ argmin f the sequence (‖xk − x∗‖)
is a.s. convergent and a.s. (αk (fk − f∗)) ∈ `1. From Assumption A.4, 0 < α ≤ αk and so the sequence
(fk − f∗) is non-negative and belongs to `1 a.s. In particular,

lim
k
fk

a.s.
= f∗.

More precisely, there is a Ω̄ ⊆ Ω with P(Ω̄) = 1 such that, for every ω ∈ Ω̄,

lim
k
f(xk(ω)) = f∗. (5.13)

For ω ∈ Ω̄, let xkj (ω) be a convergent subsequence of xk(ω); say xkj (ω)→ x∞. Then, by continuity of the
function f and the limit in (5.13),

f(x∞) = lim
k
f(xk(ω)) = f∗.

Then x∞ ∈ argmin f , as it is a minimizer of f . Summarizing, there is a full measure set for which every
cluster point of the random sequence (xk) belongs to argmin f . Finally, combining the latter result with the
fact that, for every x∗ ∈ argmin f , (‖xk − x∗‖) is a.s. convergent, the stochastic version of Opial’s Lemma
9.10 guarantees the existence of a random variable x∗ with values in argmin f such that xk

a.s.→ x∗.

In the next remarks we compare our rates on the objective function with results available in the literature.
Recall that none of the considered papers prove the convergence of the iterates.

Remark 5.9. We compare our results for a vanishing discretization with the ones obtained in [40, Theorem
8] for a single direction sampled according to a normal distribution (see also Remark 5.3). Choosing αk = α
constant in (0, 1/Λ) and hk = h/kr with h > 0 and r > 1, from Remark 5.8 we get that

min
j∈[k]

E [f(xj)− f∗] ≤
D

αk
,

where

D :=
1

2 (1− Λα)

‖x0 − x∗‖ 2 +
α

2

(
C(x∗)d

2

`
√
`

+ Λdh+ Λ2
√
`

) +∞∑
j=0

hj

 .

20

For the special case α = `/(2λd) and ` = 1 we derive (recalling that
∑+∞

j=0 1/kr = ζ(r) < +∞ where ζ is
the Riemann zeta function),

min
j∈[k]

E [f(xj)− f∗] ≤
2λd ‖x0 − x∗‖ 2

k
+
hd2ζ(r)

2k

(
C(x∗) + λh+ λ2

)
. (5.14)

Comparing equations (5.7) and (5.14) we see that the dependence on the dimension is the same however our
result converges to the optimum because we chose a decreasing discretization parameter. In addition, we are
free to choose the stepsize bigger than the one proposed in [39, 40] resulting in slightly better constants. On
the other hand, in [40], they also study the case of accelerated inertial algorithms. A similar comparison to
the one above can be done also with the results in [23].

Remark 5.10. The minimization of a smooth function via a zeroth-order oracle is also considered in [20].
The assumptions in that paper are different from ours, both in terms of properties of the objective function,
as well as of the available zeroth-order oracle. Regarding the objective function, in addition to the Lipschitz
continuity of the gradient, the authors of [20] require more restrictive assumptions, such as boundedness of
the gradient itself on the entire feasible set, which is assumed to be compact. The zeroth-order oracle instead
is more general than ours, and consists of noisy function evaluations. In their setting G denotes the bound
on the gradient of f , and R is the diameter of the feasible set. With the choice

αk =
αR

2G
√
d/`
√
k

and hk =
uG

λd3/2k
, (5.15)

for some α > 0 and u > 0, they derive a bound of the form

min
j∈[k]

E [f(xj)− f∗] ≤
5RG

√
1 + d/`√
k

(
max{α, α−1}+

αu2

√
k

+
u log(2k)

k

)
. (5.16)

If we choose αk = `/(2λd) and hk = h
λd3/2kr

with r > 1, we get

min
j∈[k]

E [f(xj)− f∗] ≤
2λd ‖x0 − x∗‖ 2

`k
+
H

2k

(
λ2C(x∗)

√
d

`
√
`

+
h√
d`

+
λ
√
d

`
√
`

)
(5.17)

Comparing (5.16) and (5.17), we observe that we obtain a better convergence rate, due to the fact that we
consider a noise-free oracle, but our analysis leads to a worse dependence on the ratio d/`. Since the two
settings are very different the significance of the comparison is somewhat limited.

Finally, in the next section, we consider the case where h = 0. i.e. Recursion (2.2).

5.5 Convergence results for recursion (2.2)

This section covers the special case of recursion (2.2), corresponding to the limiting case of Algorithm 1
when exact directional derivatives are available. Lemma 5.11 provides a sharper energy estimate than the
one in Lemma 5.1, which in turns leads to the improved convergence results of Theorem 5.12. The result is
an extended version of Theorem 3.1(iv).

Lemma 5.11. Assume H.1, H.2, P.1 and P.2. Let (xk) be a random sequence generated by recursion (2.2).
Then, for every k ∈ N and every x∗ ∈ argmin f ,

E
[
‖xk+1 − x∗‖ 2

∣∣Fk]− ‖xk − x∗‖ 2 a.s.
=
α2
kd

`
‖∇fk‖2 + 2αk〈∇fk, x∗ − xk〉.

21

Proof. For every k ∈ N and every x∗ ∈ argmin f , we have that a.s.

‖xk+1 − x∗‖ 2 − ‖xk − x∗‖ 2 = ‖xk+1 − xk‖ 2 + 2〈xk+1 − xk, xk − x∗〉

(2.2) = α2
k

∥∥∥PkP>k ∇fk∥∥∥ 2 − 2αk〈PkP>k ∇fk, xk − x∗〉

(P.1, see (5.2)) =
α2
kd

`
〈∇fk, PkP>k ∇fk〉+ 2αk〈PkP>k ∇fk, x∗ − xk〉.

The claim follows taking the conditional expectation given Fk and using P.2.

Using the estimate from the above lemma and with very mild assumptions on αk, we get the following
result ensuring convergence of the iterates, a rate in expectation for the function values and an asymptotic
a.s. convergence rate of the form 1/k.

Theorem 5.12. Assume H.1, H.2, P.1, P.2, A.1 and A.3. Let (xk) be a random sequence generated by
Algorithm 2.2. Then there is a random variable x∗ with values in argmin f such that

xk
a.s.→ x∗. (5.18)

Moreover, the sequence (fk) is a.s. non-increasing with limk fk
a.s.
= f∗ and the following convergence rate

in expectation holds:

E [fk − f∗] ≤ D0/
k∑
j=0

αj ,

where the constant D0 > 0 is provided in the proof. Finally, if A.4 also holds,

fk − f∗
a.s.
= o(k−1). (5.19)

Proof. We recall the equality from Lemma 5.11: for every x∗ ∈ argmin f and every k ∈ N,

E
[
‖xk+1 − x∗‖ 2

∣∣Fk]− ‖xk − x∗‖ 2 a.s.
=
α2
kd

`
‖∇fk‖2 + 2αk〈∇fk, x∗ − xk〉. (5.20)

By Baillon-Haddad Theorem 9.1,∇f is 1/λ co-coercive and so

E
[
‖xk+1 − x∗‖ 2

∣∣Fk]− ‖xk − x∗‖ 2
a.s.
≤
α2
kd

`
‖∇fk‖2 −

2αk
λ
‖∇fk‖2

(A.1)
a.s.
≤ −2− αΛ

λ
αk‖∇fk‖2. (5.21)

Define ξ0 := 2−αΛ/λ, a strictly positive quantity. Then by Robbins-Siegmund Lemma 9.11, for every x∗ ∈
argmin f the random variable (‖xk − x∗‖) is a.s. convergent and that a.s.

(
αk‖∇fk‖2

)
∈ `1. Beginning

again from the equality in Lemma 5.11, we estimate the term 2αk〈∇fk, x∗ − xk〉 using the convexity of f
and the gradient inequality:

fk + 〈∇fk, x∗ − xk〉 ≤ f∗.

Recalling that αk ≤ α by Assumption A.1, it leads to

E
[
‖xk+1 − x∗‖ 2

∣∣Fk]− ‖xk − x∗‖ 2 + 2αk (fk − f∗)
a.s.
≤ αd

`
αk‖∇fk‖2. (5.22)

22

Robbins-Siegmund Lemma 9.11 reveals that (αk(fk − f∗)) ∈ `1 a.s. Since by assumption (αk) is not
summable, lim infk(fk − f∗)

a.s.
= 0. By Remark 4.4, the sequence (fk) is a.s. non-increasing and bounded

below by f∗. In particular, it is a.s. convergent and fk
a.s.→ f∗. Following the same reasoning as in the proof

of Theorem 5.6, there is a random variable x∗ with values in argmin f such that xk
a.s.→ x∗. To obtain the

convergence rate first take the total expectation in inequality (5.21) and sum from j = 0 to j = k to get

k∑
j=0

αjE‖∇fj‖2 ≤
1

ξ0

k∑
j=0

(
E ‖xj − x∗‖ 2 − E ‖xj+1 − x∗‖ 2

)
=

1

ξ0

(
E ‖x0 − x∗‖ 2 − E ‖xk+1 − x∗‖ 2

)
≤ 1

ξ0
‖x0 − x∗‖ 2.

(5.23)

Summing (5.22) over k and combining it with (5.23), an expectation yields

k∑
j=0

αj E [fj − f∗] ≤
1

2
E ‖x0 − x∗‖ 2 − 1

2
E ‖xk+1 − x∗‖ 2 +

αd

2`

k∑
j=0

αjE‖∇fj‖2

(5.23) ≤ 1

2
‖x0 − x∗‖ 2 +

αd

2`ξ0
‖x0 − x∗‖ 2

=
`ξ0 + αd

2`ξ0
‖x0 − x∗‖ 2

=
1

2− Λα
‖x0 − x∗‖ 2 =: D0 < +∞.

Since (Efj) is non-increasing, E[fk − f∗]
∑k

j=0 αj ≤
∑k

j=0 αj E [fj − f∗]. Dividing by the sum over αj
yields the rate. Finally, assuming alsoA.4 and using the fact that (αk(fk − f∗)) ∈ `1 a.s., we get (fk − f∗) ∈
`1 a.s. Since (fk − f∗) is also a.s. non-increasing, we conclude by Lemma 9.6 that fk − f∗

a.s.
= o(k−1).

Remark 5.13. Note that the constant D0 in Theorem 5.12 indeed corresponds to D in Theorem 5.4 when
the discretization is set hk = 0 for every k ∈ N.

Remark 5.14. Under the same conditions of Remark 5.9 but considering the analogue of recursion (2.2),
the following result is obtained in [40, Theorem 8]: taking constant αk = 1/(4λ (d+ 4)) and hk = h,

E [f(x̄k)− f∗] ≤ 4λ (d+ 4) ‖x0 − x∗‖ 2/(2k). (5.24)

Under the same assumptions, consider the case of the sampling that we proposed (see Assumptions P.1 and
P.2). From Theorem 5.12, we get that

E [f(x̄k)− f∗] ≤
‖x0 − x∗‖ 2

2 (1− Λα)αk
.

For the case α = `/(2λd) and ` = 1 we derive

E [f(x̄k)− f∗] ≤ 2λd ‖x0 − x∗‖ 2/k (5.25)

and the same observations of Remark 5.9 hold.

23

6 Polyak-Łojasiewicz case

In contrast with the case of a general convex f considered thus far, this section assumes the PL inequality
(H.3), but convexity (H.2) is not needed. Since strong convexity implies the PL inequality, all of the results
in this section hold when the objective function is strongly convex. We use the PL inequality in the a.s. quasi-
decreasing estimates of Section 4.3 to get the main estimate of Lemma 6.1. The application of Lemma 6.1
in different settings leads to the convergence rates in expectation for the function values given in Theorems
6.2, 6.4 (based on Lemma 9.5), 6.5 (based on Lemma 9.4) and 6.8. These results are similar but intrinsically
different. In Theorem 6.2, we study the case in which both sequences (hk) and (αk) are bounded above, but
not converging to zero; specifically, the error generated by the discretization does not vanish. In this context,
we obtain a linear rate in expectation not to the optimal value, but to a sublevel of the objective function
depending on C, τ and γ, see (6.1). In Theorem 6.4, for the case of αk constant and vanishing hk, we get
sublinear rates in expectation to the optimum. In Theorem 6.5 we obtain similar rates assuming that both
(αk) and (hk) converge to zero polynomially. Note that the algorithm does not converge to the optimal value
if hk does not vanish, even with rapid decay of αk, a fact that may be surprising to readers more familiar
with first-order stochastic approximation algorithms though, as discussed, it is easy to see why. Finally, in
Theorem 6.8 we show linear convergence rates to the optimal value for a fast decay of hk .

6.1 Main estimate

The following basic estimate will be used repeatedly.

Lemma 6.1. Let (xk) be generated by Algorithm 1. Assume H.1, H.3, P.1, P.2 and A.1. Then, for every
k ∈ N,

E [fk+1 − f∗] ≤
(

1− wαkγ

2

)
E [fk − f∗] + Cαkh

2
k.

Assuming also A.4 and defining η := 1− wαγ/2, we get

E [fk − f∗] ≤ ηk
(f0 − f∗) +

C

η

k−1∑
j=0

αjh
2
j

ηj

 .
Proof. Taking the conditional expectation given Fk in the a.s. inequality of Proposition 4.3, we have

E
[
fk+1

∣∣Fk]− fk ≤ −wαk
2

E
[
‖P>k ∇fk‖2

∣∣Fk]+ Cαkh
2
k

(P.2) = −wαk
2
‖∇fk‖ 2 + Cαkh

2
k

(H.3) ≤ −wαk
2
γ (fk − f∗) + Cαkh

2
k.

An expectation yields the first claim. Under Assumption A.4, the last inequality yields

E [fk+1 − f∗] ≤
(

1− wαγ

2

)
E [fk − f∗] + Cαkh

2
k.

24

Iterating leads to the second claim:

E [fk − f∗] ≤ ηk (f0 − f∗)

+ C
[
αk−1h

2
k−1 + ηαk−2h

2
k−2 + η2αk−3h

2
k−3 + ...+ ηk−1α0h

2
0

]
= ηk (f0 − f∗) + C

k−1∑
j=0

ηk−1−jαjh
2
j

= ηk

(f0 − f∗) +
C

η

k−1∑
j=0

αjh
2
j

ηj

 .

6.2 Linear quasi-rate

We first provide an extended version of Theorem 3.7(i′). In this case both (αk) and (hk) are bounded above
but not vanishing, leading to the following result as a direct consequence of Lemma 6.1. In particular, the
following bound suggests to stop iterating when (fk − f∗) ≤ Cαh

2
/(1− η).

Theorem 6.2. Let (xk) be generated by Algorithm 1. Assume H.1, H.3, P.1, P.2, A.1 and A.4. Then, for
every k ∈ N,

E [fk − f∗] ≤ ηk (f0 − f∗) +
Cαh

2

1− η

[
1− ηk

]
,

where the constant C is defined in Proposition 4.3 and η = 1− wαγ/2.

Remark 6.3. For recursion 2.2 we recover the linear rate proved in [32]; namely,

E [fk − f∗] ≤
(

1− wαγ

2

)k
(f0 − f∗) .

On the other hand, for 0 ≤ hk ≤ h, the cumulative error term does not vanish:

lim
k

Cαh
2

1− η

[
1− ηk

]
=

2Cαh
2

wαγ
=

`Λ2αh
2

4wαγmin (1, 2− Λα− w)
, (6.1)

where we recall that 0 < w < 2− Λα and w ≤ 1. Finally, note that for αk = 1/Λ, by Remark 4.6 we have
that the decreasing rate is 1− γ/(2Λ).

6.3 Sublinear rates

We now state the results obtained with bounded step-size and vanishing discretization. Assuming only that
(hk) converges to zero, the objective function values converge in expectation to the optimum; while, for
a polynomial decay of hk, we get sublinear convergence rates. The following is an extended version of
Theorem 3.7 (ii′).

25

Theorem 6.4. Let (xk) be generated by Algorithm 1. Assume H.1, H.3, P.1, P.2, A.1 and A.4. If (hk)
converges to zero, then

lim
k

Efk = f∗.

Moreover, if hk = h/kr for some r > 0 and h > 0, then

lim sup
k

k2rE [fk − f∗] ≤
2Cαh2

wαγ
,

In particular, there is a constant C̃ > 0 such that

E [fk − f∗] ≤ C̃/k2r

and, for every t ∈ (0, r),

E [fk − f∗] = o

(
1

k2t

)
.

Proof. From Lemma 6.1, we get

E [fk+1 − f∗] ≤ ηE [fk − f∗] + Cα h2
k.

The remainder follows from Lemma 9.5 with ck = Cαh2
k, c = Cαh2 and t = 2r.

In the next result we allow both the step-size and the discretization to converge to zero polynomially. In
this case, we get again sublinear rates in expectation similar to the ones obtained in Theorem 6.4.

Theorem 6.5. Let (xk) be generated by Algorithm 1. Assume H.1, H.3, P.1 and P.2. For 0 < α < 2/Λ and
h > 0, set αk = α/ks, hk = h/kr and define

c := wαγ/2 and d := Cαh2. (6.2)

Then, for s = 1 and r > 0, we get

E [fk − f∗] ≤

d

(c−2r)k2r
+ o

(
1
k2r

)
if 2r < c;

O
(

log k
kc

)
if 2r = c;

O
(

1
kc

)
if 2r > c.

(6.3)

If 0 < s < 1, for every r > 0, we have

E [fk − f∗] ≤
d

c

1

k2r
+ o

(
1

k2r

)
.

Remark 6.6. In order for the previous results to hold, both (αk) and (hk) must converge to zero. In the case
of s = 1 (and so αk proportional to 1/k), as the intuition suggests, the rate improves for larger r (and thus
for hk vanishing faster) up to the value c/2. But eventually a saturation effect occurs: increasing r beyond
c/2 does not improve the bound. On the other hand, for αk = α/ks with 0 < s < 1, the convergence rates
improve with larger values of r similar to the ones in Theorem 6.4.

26

Remark 6.7. Note the difference between the results of this section. In Theorem 6.2, for non-vanishing hk,
we obtain a linear rate with an error; while in Theorems 6.4 and 6.5, with hk going to zero, the convergence
rates are sublinear but to the optimum.

Proof. From Lemma 6.1,

E [fk+1 − f∗] ≤
(

1− wαkγ

2

)
E [fk − f∗] + Cαkh

2
k.

To conclude the first result, apply the first part of Lemma 9.4 with p = 2r and c, d as in (6.2). For the second
result, apply the second part of Lemma 9.4 with the same c, d as before and s = s and t = s+ 2r.

6.4 Linear rate

Finally, assuming a fast decay of hk, we derive linear convergence rates in expectation. The following result
is an extended version of Theorem 3.7(iii′). The proof is a simple consequence of Lemma 6.1.

Theorem 6.8. Let (xk) be generated by Algorithm 1. Assume H.1, H.3, P.1, P.2, A.1 and A.4. Assume that(
h2
k/ηk

)
∈ `1. Then, for every k ∈ N,

E [fk − f∗] ≤ ηk
(f0 − f∗) +

Cα

η

+∞∑
j=0

h2
j

ηj

 ,
where the constant C is defined in Proposition 4.3 and η = 1− wαγ/2.

7 Numerical results

In this section we present synthetic examples illustrating the different results we derived and discussed. Our
analysis unifies many algorithms that have been thoroughly empirically examined, e.g., [15, 7, 33]. Hence,
we present only toy problems to illustrate our theoretical results. We omit the convex, non-PL case as we
were unable to identify a function that resulted in a qualitative difference in performance of the algorithm for
any ` ∈ {1, . . . , d}.
Convex function satisfying PL inequality. Many convex functions satisfy the PL inequality leading to an
improved rate of convergence. An example of this case is f(x) = ‖Ax‖2 where A ∈ Rn×d is fixed but not
necessarily full column rank and λ = 100. Specifically, if any eigenvalue of A is 0 then f is not strongly
convex, however because it is PL we are still able to apply Theorem 3.7. We choose n = d = 100, and we
force at least one eigenvalue of A to be 0. For the cases ` < d we take the average of 10 runs. While in the
long run the discrete gradient method catches up to the subspace approaches, it is important to recognize that
for many practical problems of interest the dimension of the objective function may be very high relative to
the budget for function evaluations (this budget could be due to time, money, computational power, etc). In
very high-dimensional cases, it may not even be possible to perform a single iteration of gradient descent, due
to the d+1 function evaluations required at each iteration; requiring only ` function evaluations per iteration,
may allow for substantial progress with identical budget constraints. This effect is even more apparent with
the rapid initial progress made with ` < d in the left panel of Figure 1.
Non-convex function satisfying PL inequality. f(x) = ‖Ax‖2 + 3 sin2(c>x), with A fixed but not

necessarily full rank and Ac = c. Again, let n = d = 100 and λ = 100. For the cases ` < d we take the
average of 10 runs. Themost notable feature in Figures 1 and 2 is that when the step-size is not fixed, choosing

27

Figure 1: Optimization of a convex objective function satisfying the PL inequality. left: α = `/(dλ),
h = 10−7. center: α = `/(dλ), h = 10−7/k0.0001. right: α = `/(dλ

√
k), h = 10−7/k0.0001. Note the

different axes between the figures.

Figure 2: Optimization of a non-convex objective function satisfying the PL inequality. left: α = `/(dλ),
h = 10−7. center: α = `/(dλ), h = 10−7/k0.0001. right: α = `/(dλ

√
k), h = 10−7/k0.0001. Note the

different axes between the figures.

` < d severely under performs the discrete gradient method. When ` < d only a subset of the available
information is being used at each iteration, and with the step-size diminishing every successive iteration
has less impact than those that precede it. Thus, the trade-off between cost-per-iteration and progress-per-
iteration favors a higher per-iteration cost in return for more progress, particularly in the early iterations.
This trade-off flips when the step-size is fixed: much faster progress is made early on when ` < d and
many directions provide improvement of the objective, but of course the discrete gradient method ultimately
catches up.
Variability due to stochasticity. One potential benefit of letting ` = d and performing the full discrete
gradient method is that there is no randomness involved so the results are deterministic. The theorems provide
guarantees for Ef(xk)−f∗, but here we investigate how much variability can be expected between runs with
identical initializations when ` < d. We use the same non-convex function as previously, and perform 100
runs using the same initialization in each case, considering 15000 function evaluations. The substantial
overlap between the ` < d cases makes it difficult to discern between various values of `, thus in this figure
we provide only the extremes, ` = 1 and ` = d. The bold line represents the mean of the ` = 1 case, and since
` = d is deterministic it is run only once. As expected, there is variability between runs when ` < d, however
in the early iterations even the worst case performs better than discretized gradient descent. We have only a
heuristic explanation for this phenomenon: in the early iterations there are many directions that may lead to
improvement so the inexpensive ` = 1 directions are more efficient than a full gradient estimate, but as we
approach the optimum a judicious choice of direction is rewarded. The fact that the discrete gradient method

28

Figure 3: Optimization of a convex objective function with 100 restarts at the same initialization. left:
α = `/(dλ), h = 10−7. center: α = `/(dλ), h = 10−7/k.0001. right: α = `/(dλ

√
k), h = 10−7/k1.0001.

Note the different axes between the figures.

catches up and eventually outperforms the others is consistent with the theory since all else equal, larger
` implies better progress per iteration. Of greater practical interest is the out-performance in the scenario
` � d in the early iterations. This suggests that for low-precision optimization, or when relatively few
iterations are possible due to time or money constraints, it may be beneficial to choose ` < d. Indeed, this is
precisely the scenario where subspace descent methods are used, cf. [33, 15, 35]. Our theory does not cover
the use of a backtracking line search such as the one presented in [8], so we do not provide figures detailing
its performance; however, in practice a line search is a necessary component to achieve outperformance
compared to the gradient method as discussed at length in [33].
Effect of h. Recall that there is an additive error term at each iteration due to the use of finite differences to
approximate the gradient. In light of this fact, it may be surprising that the preceding figures appear to have
objective function values that decrease monotonically with the increase in function evaluations even when h
is fixed. Note, however, that for a fixed h as in Theorem 6.2 the error is asymptotically O(h2), whereas in
Theorem 6.4 a decaying hk = h/kr is used with r, h > 0, resulting in an objective that decays to zero. Figure
4 demonstrates that the limiting error, or lack thereof, guaranteed by the theorems is observed in practice.
The first figure is a convex function satisfying the PL inequality with various fixed values for h. The second
is a non-convex function satisfying the PL inequality with the same values of h, and in the third figure we
set hk = h/kr with h = 10−5 and r = 1 and run the algorithm 100 times on the non-convex function. In all
cases, d = 5, ` = 1 and λ = 4, resulting in fast convergence.
Several conclusions can be drawn from Figure 4. First, as expected by the theorems, h does not appear to
play a role in the rate of convergence, only in the magnitude of the asymptotic error. Further, for all of
the algorithms that fit our theory the finite difference error can essentially be ignored, provided the desired
accuracy is less thanO(h2). So, with h the square root of machine precision, our theorems seem to indicate
(and our figures support) that the error due to finite differences can be safely ignored. The figure on the right
shows that the variance due to different stochastic realizations of the algorithm is small, suggesting that the
theoretical analysis done in [33] and [32] may be extended to the discrete setting.

8 Conclusions

We presented a method that generalizes several well-known derivative-free optimization algorithms includ-
ing, for example, spherical smoothing and discretized versions of coordinate and gradient descent. We pro-
vide convergence analysis of this generic method considering objective functions that are either convex or
satisfy a Polyak-Łojasiewicz (PL) condition. Multiple possible choices for the stepsizes and the finite dif-

29

Figure 4: left: Optimization of a convex PL function using various values of h. center: Optimization of a
non-convex PL function using various values of h. right: Optimization of a non-convex PL function with
hk = 10−5/k

ference parameter are studied. The best choice depends on the error tolerance of the user. By allowing the
stepsize and discretization to decay the algorithm achieves a slower rate of convergence but is able to converge
to an optimum, but by fixing these values a faster convergence rate is obtained at the expense of converging
only to within a region of an optimum. To the best of our knowledge, this work provides the first convergence
guarantees for the iterates of spherical smoothing and discretized coordinate descent to a minimizer when
the objective function is convex.

There are several possible extensions of this work. Our analysis does not cover the use of an adaptive
stepsize that has been shown empirically to be highly advantageous [35, 33]. Theoretical analysis using a
stochastic linesearchmay be possible, several recent papers offer promising results that may extend to our case
[13, 8, 42]. It would be interesting to analyze the algorithm in the presence of noisy function evaluations as
in [30, 34]. Such an extension would be of great practical consequence as many applications of interest have
noisy objective functions. Finally, faster convergence may be possible using derivative-free quasi-Newton
methods or any methods that exploit the curvature of the objective as in [6, 27, 28, 10].

References

[1] A. Agarwal, O. Dekel, and L. Xiao, Optimal algorithms for online convex optimization with multi-
point bandit feedback, in Proceedings of the Twenty Third Annual Conference on Computational Learn-
ing Theory, Citeseer, 2010, pp. 28–40.

[2] H. Attouch, J. Bolte, and B. F. Svaiter,Convergence of descent methods for semi-algebraic and tame
problems: proximal algorithms, forward–backward splitting, and regularized gauss–seidel methods,
Mathematical Programming, 137 (2013), pp. 91–129.

[3] H. Avron, P. Maymounkov, and S. Toledo, Blendenpik: supercharging Lapack’s least-squares
solver, SIAM J. Sci. Comput., 32 (2010), pp. 1217–1236.

[4] J.-B. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés etn-cycliquement
monotones, Israel Journal of Mathematics, 26 (1977), pp. 137–150.

[5] A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type methods, SIAM
J. Optim., 23 (2013), pp. 2037–2060.

30

[6] A. S. Berahas, R. H. Byrd, and J. Nocedal,Derivative-free optimization of noisy functions via quasi-
Newton methods, SIAM J. Optim., 29 (2019), pp. 965–993.

[7] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, A theoretical and empirical com-
parison of gradient approximations in derivative-free optimization, arXiv preprint arXiv:1905.01332,
(2019).

[8] A. S. Berahas, L. Cao, and K. Scheinberg, Global convergence rate analysis of a generic line search
algorithm with noise, arXiv preprint arXiv:1910.04055, (2019).

[9] D. P. Bertsekas and J. N. Tsitsiklis, Gradient convergence in gradient methods with errors, SIAM
Journal on Optimization, 10 (2000), pp. 627–642.

[10] R. Bollapragada and S. M. Wild, Adaptive sampling quasi-newton methods for derivative-free
stochastic optimization, arXiv preprint arXiv:1910.13516, (2019).

[11] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter, From error bounds to the complexity of first-
order descent methods for convex functions, Mathematical Programming, 165 (2017), pp. 471–507.

[12] C. Cartis and L. Roberts, Scalable subspace methods for derivative-free nonlinear least-squares op-
timization, arXiv preprint arXiv:2102.12016, (2021).

[13] C. Cartis and K. Scheinberg, Global convergence rate analysis of unconstrained optimization meth-
ods based on probabilistic models, Mathematical Programming, 169 (2018), pp. 337–375.

[14] A. Cauchy et al., Méthode générale pour la résolution des systemes d’équations simultanées, Comp.
Rend. Sci. Paris, 25 (1847), pp. 536–538.

[15] K. Choromanski, M. Rowland, V. Sindhwani, R. Turner, and A. Weller, Structured evolution
with compact architectures for scalable policy optimization, in Proceedings of the 35th International
Conference on Machine Learning, J. Dy and A.Krause, eds., vol. 80 of Proceedings of Machine Learn-
ing Research, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018, PMLR, pp. 970–978.

[16] K. L. Chung, On a stochastic approximation method, Ann. Math. Statistics, 25 (1954), pp. 463–483.

[17] P. L. Combettes and J.-C. Pesquet, Stochastic quasi-fejér block-coordinate fixed point iterations with
random sweeping, SIAM Journal on Optimization, 25 (2015), pp. 1221–1248.

[18] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-free optimization, vol. 8 of
MPS/SIAM Series on Optimization, Society for Industrial and AppliedMathematics (SIAM), Philadel-
phia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2009.

[19] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, Faster least squares approxima-
tion, Numer. Math., 117 (2011), pp. 219–249.

[20] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, Optimal rates for zero-order convex
optimization: The power of two function evaluations, IEEE Transactions on Information Theory, 61
(2015), pp. 2788–2806.

[21] M. J. Ehrhardt, E. S. Riis, T. Ringholm, and C.-B. Schönlieb, A geometric integration approach to
smooth optimisation: Foundations of the discrete gradient method, arXiv preprint arXiv:1805.06444,
(2018).

31

[22] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, Online convex optimization in the bandit setting:
gradient descent without a gradient, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, ACM, New York, 2005, pp. 385–394.

[23] S. Ghadimi and G. Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic program-
ming, SIAM Journal on Optimization, 23 (2013), pp. 2341–2368.

[24] V. Grimm, R. I. McLachlan, D. I. McLaren, G. Quispel, and C. Schönlieb, Discrete gradient meth-
ods for solving variational image regularisation models, Journal of Physics A: Mathematical and The-
oretical, 50 (2017), p. 295201.

[25] A. Gupal, A method for the minimization of almost-differentiable functions, Cybernetics, 13 (1977),
pp. 115–117.

[26] A. Gupal and V. Norkin, Algorithm for the minimization of discontinuous functions, Cybernetics, 13
(1977), pp. 220–223.

[27] F. Hanzely, N. Doikov, Y. Nesterov, and P. Richtarik, Stochastic subspace cubic Newton method, in
Proceedings of the 37th International Conference on Machine Learning, H.D. III and A. Singh, eds.,
vol. 119 of Proceedings of Machine Learning Research, PMLR, 13–18 Jul 2020, pp. 4027–4038.

[28] F. Hanzely, D. Kovalev, and P. Richtarik, Variance reduced coordinate descent with acceleration:
New method with a surprising application to finite-sum problems, in Proceedings of the 37th Inter-
national Conference on Machine Learning, H.D. III and A. Singh, eds., vol. 119 of Proceedings of
Machine Learning Research, PMLR, 13–18 Jul 2020, pp. 4039–4048.

[29] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-gradient meth-
ods under the polyak-łojasiewicz condition, in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Springer, 2016, pp. 795–811.

[30] J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function, Ann.
Math. Statistics, 23 (1952), pp. 462–466.

[31] K. Knopp, Theory and application of infinite series, Courier Corporation, 1990.

[32] D. Kozak, S. Becker, A. Doostan, and L. Tenorio, Stochastic subspace descent, arXiv preprint
arXiv:1904.01145, (2019).

[33] D. Kozak, S. Becker, A. Doostan, and L. Tenorio, A stochastic subspace approach to gradient-free
optimization in high dimensions, Comput. Optim. Appl., 79 (2021), pp. 339–368.

[34] H. J. Kushner and D. S. Clark, Stochastic approximation methods for constrained and unconstrained
systems, vol. 26 of Applied Mathematical Sciences, Springer-Verlag, New York-Berlin, 1978.

[35] H. Mania, A. Guy, and B. Recht, Simple random search of static linear policies is competitive for rein-
forcement learning, in Advances in Neural Information Processing Systems 31, S. Bengio, H.Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.Garnett, eds., Curran Associates, Inc., 2018,
pp. 1800–1809.

[36] P.-G. Martinsson and J. A. Tropp, Randomized numerical linear algebra: foundations and algo-
rithms, Acta Numer., 29 (2020), pp. 403–572.

32

[37] J. Matyas, Random optimization, Automation and Remote control, 26 (1965), pp. 246–253.

[38] F. Mezzadri, How to generate random matrices from the classical compact groups, Notices Amer.
Math. Soc., 54 (2007), pp. 592–604.

[39] Y. Nesterov, Random gradient-free minimization of convex functions, tech. rep., Université catholique
de Louvain, Center for Operations Research and . . . , 2011.

[40] Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions, Foundations
of Computational Mathematics, 17 (2017), pp. 527–566. First appeard as CORE discussion paper 2011.

[41] Z. a. Opial, Weak convergence of the sequence of successive approximations for nonexpansive map-
pings, Bull. Amer. Math. Soc., 73 (1967), pp. 591–597.

[42] C. Paquette and K. Scheinberg, A stochastic line search method with expected complexity analysis,
SIAM J. Optim., 30 (2020), pp. 349–376.

[43] B. T. Polyak, Introduction to optimization., vol. 1, Optimization Software Inc., New York, 1987.

[44] L. A. Rastrigin, About convergence of random search method in extremal control of multi-parameter
systems, Avtomat. i Telemekh, 24 (1963), pp. 1467–1473.

[45] E. S. Riis, M. J. Ehrhardt, G. Quispel, and C.-B. Schönlieb, A geometric integration approach to
nonsmooth, nonconvex optimisation, arXiv preprint arXiv:1807.07554, (2018).

[46] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statistics, 22 (1951),
pp. 400–407.

[47] H. Robbins and D. Siegmund, A convergence theorem for non negative almost supermartingales and
some applications, in Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus,
Ohio, 1971), 1971, pp. 233–257.

[48] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable alterna-
tive to reinforcement learning, arXiv preprint arXiv:1703.03864, (2017).

[49] S. Salzo and S. Villa, Parallel random block-coordinate forward-backward algorithm: A unified con-
vergence analysis, arXiv preprint arXiv:1906.07392, (2019).

[50] M. Schmidt, N. L. Roux, and F. Bach, Convergence rates of inexact proximal-gradient methods for
convex optimization, arXiv preprint arXiv:1109.2415, (2011).

[51] J. C. Spall,Multivariate stochastic approximation using a simultaneous perturbation gradient approx-
imation, IEEE Trans. Automat. Control, 37 (1992), pp. 332–341.

[52] R. Tappenden, M. Takáč, and P. Richtárik, On the complexity of parallel coordinate descent, Opti-
mization Methods and Software, 33 (2018), pp. 372–395.

[53] R. J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing, Machine learning, 8 (1992), pp. 229–256.

[54] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor. Comput. Sci.,
10 (2014), pp. iv+157.

33

[55] S. J. Wright, Coordinate descent algorithms, Math. Program., 151 (2015), pp. 3–34.

[56] S. K. Zavriev, On the global optimization properties of finite-difference local descent algorithms, J.
Global Optim., 3 (1993), pp. 67–78.

34

9 Supplementary material and auxiliary lemmas

Here we collect the main auxiliary results used in the convergence analysis of Algorithm 1.

Proof of Lemma 4.1: Let k ∈ N, denoting by p(j) the j-th column of Pk, we want to estimate

∥∥∥∇(Pk,hk)f(x)− P>k ∇f(x)
∥∥∥ =

√√√√∑̀
j=1

([
∇(Pk,hk)f(x)

]
j
− 〈∇f(x), p(j)〉

)2
. (9.1)

To get an upper-bound for the term in parenthesis, we use H.1. As ∇f is λ-Lipschitz, the Descent Lemma
9.2 holds: for every x ∈ Rd,∣∣∣f(x+ hkpj)− f(x)− hk〈∇f(x), p(j)〉

∣∣∣ ≤ λh2
k

2

∥∥∥p(j)
∥∥∥2
. (9.2)

Then, rearranging, ∣∣∣[∇(Pk,hk)f(x)
]
j
− 〈∇f(x), p(j)〉

∣∣∣ ≤ λhk
2

∥∥∥p(j)
∥∥∥2

a.s. (9.3)

Note that P.1 implies ‖p(j)‖2 a.s.
= d/` and so (9.1) and (9.3) yield

∥∥∥∇(Pk,hk)f(x)− P>k ∇f(x)
∥∥∥ ≤

√√√√∑̀
j=1

(
λhkd

2`

)2

=
λhkd

2
√
`

a.s..

Lipschitz smooth functions We start with two well-known lemmas on Lipschitz smooth functions, namely
differentiable functions with Lipschitz continuous gradient.

Lemma 9.1 (Baillon-Haddad Theorem [4]). Let f : Rd → R be a convex and Fréchet differentiable
function with λ-Lipschitz continuous gradient for some λ > 0. Then ∇f is 1/λ co-coercive; namely, for
every x, y ∈ Rd,

〈∇f(y)−∇f(x), y − x〉 ≥ ‖∇f(y)−∇f(x)‖ 2/λ.

Lemma 9.2 (Descent Lemma [43, Sec 1.1.2]). Let f : Rd → R be a Fréchet differentiable function with
λ-Lipschitz continuous gradient. Then, for every x, y ∈ Rd,

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ λ ‖y − x‖ 2/2.

Real sequences In this section, we first recall Opial’s Lemma in the deterministic setting. In the next, we
collect some results regarding convergence and convergence rates for real sequences.

Lemma 9.3 (Opial, deterministic version [41]). Let Z ⊆ Rd be a non-empty subset and (xk) ⊆ Rd a
sequence. Assume that

• for every z ∈ Z ,
∃ lim

k
‖xk − z‖;

35

• every cluster point of xk belongs to Z; namely,

xkj → x∞ =⇒ x∞ ∈ Z.

Then there exists x̄ ∈ Z such that xk → x̄.

Lemma 9.4 (Chung’s Lemma [16]). Let (ak) be a non-negative sequence and c, d and p strictly-positive
constants.
First suppose that, for every k ∈ N,

ak+1 ≤
(

1− c

k

)
ak +

d

kp+1
.

Then

ak ≤

d

(c−p)kp + o
(

1
kp

)
if p < c;

O
(

log k
kc

)
if p = c;

O
(

1
kc

)
if p > c.

(9.4)

Now suppose that, for some 0 < s < 1 and s < t and every k ∈ N,

ak+1 ≤
(

1− c

ks

)
ak +

d

kt
.

Then
ak ≤

d

c

1

kt−s
+ o

(
1

kt−s

)
.

Lemma 9.5. Let (ak) and (ck) be non-negative sequences with limk ck = 0 and let η ∈ (0, 1). If for every
k ∈ N

ak+1 ≤ (1− η) ak + ck, (9.5)

then limk ak = 0.
Moreover, if ck = c/kt for some c ≥ 0 and t > 0, then

lim sup
k

ktak ≤
c

η
.

Proof. Iterating the inequality in (9.5), we get

ak ≤ (1− η)ka0

+
(
ck−1 + (1− η)ck−2 + (1− η)2ck−3 + (1− η)3ck−4 + ...+ (1− η)k−1c0

)
≤ a0 +

(
sup
j≥0

cj

)∑
j≥0

(1− η)j =: C̃ < +∞,

where we used the fact that (ck) is convergent (and thus bounded) and that η ∈ (0, 1). In particular, the
sequence (ak) is bounded and so its lim sup is a real number. Then, again from the hypothesis that ak+1 ≤
(1− η)ak + ck and the existence of limk ck, we have

lim sup
k

ak ≤ lim sup
k

[(1− η)ak + ck] = (1− η) lim sup
k

ak + lim
k
ck.

36

So, as limk ck = 0 and lim supk ak ∈ [0,+∞), η lim supk ak ≤ 0. Finally, as η ∈ (0, 1),

lim sup
k

ak ≤ 0

and so, as ak ≥ 0, limk ak = 0. Now assume that ck = c/kt for some c ≥ 0 and t > 0. By kt ≤ (k + 1)t,
we have

c

kt
≤ c

η

[
1

(k + 1)t
− (1− η)

1

kt

]
.

Using the latter inequality (9.5), we get

ak+1 −
c

η(k + 1)t
≤ (1− η)

[
ak −

c

ηkt

]
. (9.6)

First suppose that there exists k̄ ∈ N such that ak̄ ≤ c
ηk̄t

. Using (9.6), it is easy to see by recursion that, for
every k ≥ k̄,

ak ≤
c

ηkt

and so that the claim holds. Now suppose the opposite; namely, that for every k ∈ N

ak −
c

ηkt
> 0.

Then, iterating (9.6), we get

ak −
c

ηkt
≤ (1− η)k

[
a1 −

c

η

]
.

Finally,

lim sup
k

ktak ≤ lim sup
k

{
c

η
+ kt(1− η)k

[
a1 −

c

η

]}
=
c

η
.

We conclude this part with the following three well-known results. The proof of the first can be found in
[31, Theorem 3.3.1], while the second is just the deterministic version of Lemma 9.11. For the third, related
to estimates with errors, see [50].

Lemma 9.6. Let (ak) be a non-negative, non-increasing and summable sequence. Then ak = o(k−1).

Lemma 9.7. Let (rk), (βk), (yk) and (wk) be non-negative real sequences with (βk) and (wk) in `1. Suppose
that, for every k ∈ N,

rk+1 − (1 + βk)rk + yk ≤ wk.
Then (rk) is convergent and (yk) belongs to `1.

Lemma 9.8. [Discrete Bihari’s Lemma] Assume that (uk) is a non-negative real sequence, that (Sk) is a
non-decreasing sequence such that S0 ≥ u2

0 and that (ρj) is a non-negative sequence. If, for every k ∈ N,

u2
k ≤ Sk +

k∑
j=0

ρjuj ,

then, for every k ∈ N,

uk ≤
1

2

k∑
j=0

ρj +

Sk +

1

2

k∑
j=0

ρj

21/2

.

37

Random sequences In this section, we recall the extension of Opial’s Lemma 9.3 and Lemma 9.7 to the
stochastic setting (see Lemma 9.10 and 9.11 - respectively). For completeness, we show the proof of Lemma
9.10, starting with the auxiliary Lemma 9.9. In the next, (Ω,A,P) is a probability space and we say that Ω̃
is full-measure (f.m.) if Ω̃ ⊆ Ω and P(Ω̃) = 1. The proof of the Lemma 9.9 can be found in [17, Proposition
2.3] as part of a result about Fejér monotonicity. We repeat the reasoning for clarity.

Lemma 9.9. LetZ ⊆ Rd be a non-empty subset and (xk) a random sequence on (Ω,A,P)with values inRd.
Assume that, for every z ∈ Z , there exists Ωz f.m. such that, for every ω ∈ Ωz , the sequence (‖xk(ω)− z‖)
converges. Then there exists Ω̃ f.m. such that, for every ω ∈ Ω̃ and every z ∈ Z , ∃ limk ‖xk(ω)− z‖.

Proof. By separability of Z ⊆ Rd, let W ⊆ Z be a countable subset such that W = Z and define Ω̃ :=⋂
w∈W Ωw. AsW is countable and P(Ωw) = 1 for every w ∈W , Ω̃ is f.m. Moreover, for every ω ∈ Ω̃ and

every w ∈W , there exists
lim
k
‖xk(ω)− w‖.

We want to show that, for every ω ∈ Ω̃ and every z ∈ Z , there exists

lim
k
‖xk(ω)− z‖.

Fix ω ∈ Ω̃ and z ∈ Z . AsW is dense in Z , there exists a sequence wj ⊆W such that wj → z. As wj ∈W
for each j ∈ N, we know that there exists

lim
k
‖xk(ω)− wj‖ =: τj(ω). (9.7)

Notice that
− ‖wj − z‖ ≤ ‖xk(ω)− z‖ − ‖xk(ω)− wj‖ ≤ ‖wj − z‖. (9.8)

Then,

−‖wj − z‖ ≤
(9.8) ≤ lim inf

k

[
‖xk(ω)− z‖ − ‖x(ω)− wj‖

]
(9.7) = lim inf

k
‖xk(ω)− z‖ − τj(ω)

≤ lim sup
k
‖xk(ω)− z‖ − τj(ω)

(9.7) = lim sup
k

[‖xk(ω)− z‖ − ‖xk(ω)− wj‖]

(9.8) ≤ ‖wj − z‖.

Taking the limit for j → +∞ and recalling that wj → z,

lim inf
k
‖xk(ω)− z‖ = lim sup

k
‖xk(ω)− z‖

and so that there exists limk ‖xk(ω)− z‖.

Lemma 9.10 (Opial, stochastic version). Let Z ⊆ Rd a non-empty subset and (xk) a random sequence on
(Ω,A,P) with values in Rd. Assume that

38

• for every z ∈ Z , there exists Ωz f.m. such that, for every ω ∈ Ωz ,

∃ lim
k
‖xk(ω)− z‖;

(i.e., for every z ∈ Z , the random variable ‖xk − z‖ converges a.s.)
• there exists Ω̂ f.m. such that, for every ω ∈ Ω̂, every cluster point of xk(ω) belongs to Z; namely,

xkj (ω)→ x∞ =⇒ x∞ ∈ Z.

Then there exists a Z-valued random variable x̄ such that xk → x̄ a.s.; namely, there exists Ω̄ f.m. such
that, for every ω ∈ Ω̄, xk(ω)→ x̄(ω) with x̄(ω) ∈ Z .

Proof. From the assumptions and Lemma 9.9, there exists Ω̃ f.m. such that, for every ω ∈ Ω̃ and every
z ∈ Z ,

∃ lim
k
‖xk(ω)− z‖.

Let Ω̄ := Ω̃ ∩ Ω̂. Then P(Ω̄) = 1 and, for every ω ∈ Ω̄, we have both that
• for every z ∈ Z , ∃ limk ‖xk(ω)− z‖;
• every cluster point of xk(ω) belongs to Z .

We conclude by the deterministic version of Opial’s Lemma 9.3 that, for every ω ∈ Ω̄, there exists x̄ (ω) ∈ Z
such that xk(ω)→ x̄(ω).

Lemma 9.11 (Robbins-Siegmund [47]). Let (Ω,A,P) be a measure space, and let (Fk) be a filtration of
A. Let (rk), (yk), (wk) and (βk) be sequences of non-negative random variables adapted to (Fk). Let (βk)
and (wk) belong to `1 a.s. and suppose that, for every k ∈ N,

E [rk+1 | Fk]− (1 + βk)rk + yk
a.s.
≤ wk.

Then (rk) converges a.s. to a random variable with non-negative values and (yk) ∈ `1 a.s.

Remark 9.12. Consider a function f : Rd → R with λ-Lipschitz gradient and at least one minimizer.
Applying the recursion of Algorithm 1 to such a function with an arbitrary starting point x0 ∈ Rd we get
that ‖xk − x∗‖2, 〈PkP>k ∇fk, xk − x∗〉, and ‖∇fk‖2 are bounded for all k > 0. In particular, ‖∇fk‖2,
‖xk − x∗‖2, and 〈PkP>k ∇fk, xk − x∗〉 are all integrable. To see this note first that ∇fk and xk are both
measurable. Recall that for finite xk, λ-Lipschitz gradient of f implies that ‖∇fk‖2 ≤ λ2 ‖xk − x∗‖2.
Choose an arbitrary finite x0 to begin the recursion. Then,

‖x1 − x∗‖2 ≤ 2 ‖x0 − x∗‖2 + 2α2
0 ‖P0∇P0f0‖2

≤ C1 + C2

∥∥∥P0∇P0f0 − P0P
>
0 ∇f0 + P0P

>
0 ∇f0

∥∥∥2

Lemma 4.1 ≤ C1 + C2

(
C3 +

(
d

`

)2

‖∇f0‖2
)
,

whereC1, C2, C3 are fixed and finite, the values are unimportant but can be calculated. Repeated recursion re-
veals that ‖xk − x∗‖2 is bounded for all k > 0. Further, by λ-Lipschitz gradient, ‖∇fk‖2 ≤ λ2 ‖xk − x∗‖2.
The claim on the inner product follows from Young’s inequality and the previous results. Finally, since
‖∇fk‖2, ‖xk − x∗‖2, and 〈PkP>k ∇fk, xk − x∗〉 are bounded, and measurable, they are integrable.

39

9.1 Special cases of the algorithm

We present several well-known special cases of Algorithm 1 (among which are: discrete gradient descent,
discrete coordinate descent, spherical smoothing, and more), and provide some historical perspective on the
development of these black-box algorithms.

Assumptions P.1 and P.2 describe matrices P that are generalizations of a few well-known cases. It
is important that P is comprised of ` orthonormal columns, and in the special case that d = `, P is an
orthogonal matrix. Specifically, when d = `, PP>∇f(x) = ∇f(x) and ∇(P,h)f(x) is a forward finite
difference estimate of the gradient along d orthogonal directions. Therefore gradient descent and discrete
gradient descent can be viewed as special cases of (2.2) and Algorithm 1 respectively. Though this is of little
significance in practice, it provides a means for verifying our analysis: by setting ` = d we ought to recover
previously stated results for the discrete gradient method.

In our analysis we do not differentiate between various choices of P , all of our proofs hold whenever P.1
and P.2 are satisfied. It is clear that the specific choice of P does impact the performance of the algorithm
(see, e.g., [7, 33]), but the purpose of this work is to present a unified convergence analysis rather than to
investigate the nuances of each particular case. Therefore, in this section we present several choices for P
that satisfy P.1 and P.2 with an emphasis on choices that correspond to previously described methods. Our
results hold for all of the special cases described in this section, and in many of the cases our results represent
an advancement over the current theoretical understanding of the special cases described.

Coordinate descent Suppose P = (
√
d/`)S where S consists of ` columns of the identity matrix chosen

uniformly at random. In this case it is straightforward to see that PP>∇f(x) corresponds to ` coordinate
directions of the gradient scaled by a constant d/`; that is, (2.2) with this choice of P is a scaling of block
coordinate descent with uniform sampling of the coordinates. Analogously, P∇(P,h)f(x) is (up to a scaling
constant) a forward finite difference estimate of the gradient along ` coordinate directions and we recover
discretized coordinate descent.

Coordinate descent with a change of basis More generally, if P consists of ` columns selected uniformly
at random from an orthogonal matrix inRd×d, and scaled by

√
d/` then P satisfies P.1 and P.2. For instance,

suppose that one selects ` columns uniformly at random from scaled versions of a discrete cosine transform
matrix or the Hadamard matrix. The resulting d × ` matrix defines a valid matrix P for our analysis. Any
particular choice of fixed orthogonal matrix for P amounts to discretized coordinate descent in a different
basis, but if little is known a priori about the structure of f then there is no reason to select one basis over
another.

Random orthogonal matrices The orthogonal matrices mentioned in the previous paragraph have been
coupled with a random component and used extensively to "sketch" problems. Typically, sketching entails
approximating a problem by representing the data in a lower dimensional (random) subspace, and solving
the approximate problem (see, e.g., [3, 19] for the least squares case, or [54, 36] for a more general overview
of sketching algorithms in numerical linear algebra). The properties of the matrix that projects the data onto
a subspace allow for guarantees on the quality of the approximated solution as compared to the true solution.
These same matrices can instead be used to sketch the gradient using our method. For an example of such a
sketching matrix consider a Hadamard matrix H ∈ Rd×d , a diagonal matrix D ∈ Rd×d with equiprobable
entries {1,−1} along the diagonal, and a matrix S ∈ Rd×` independent ofD with columns chosen uniformly
at random from the identity. Let P = (

√
d/`)DHS, with D and S re-sampled at each iteration. This is

40

similar to the sketching matrix described in [19] and its properties are well known, it is simple to verify that
it satisfies (P.1) and (P.2). This method is described in [15], however they provide only empirical results,
making no claims about the convergence properties. To our knowledge our analysis is the first to provide
convergence analysis for these types of matrices used in a derivative-free optimization setting.

Spherical smoothing Consider instead P = (
√
d/`)QId×`, where Q is as in the QR-decomposition of

a matrix Z = QR ∈ Rd×d with Rii > 0, and the entries of Zk are iid N (0, 1). The matrix Id×` truncates
Q to its first ` columns so QId×` corresponds to ` columns of the random orthogonal matrix distributed
according to the Haar measure on orthogonal matrices [38]. In other words, the columns p(j) are orthogonal
and distributed uniformly on the sphere for all j. Thus, when ` = 1, P∇(P,h)f(x) is a spherical smoothing
estimate of the gradient, as described in, e.g., [22, 7]. The matrix Z is re-sampled at each iteration so, as
with the matrices described in the previous paragraph, the basis changes with each iteration. In fact, sampling
from the Haar measure on the set of orthogonal matrices corresponds to sampling uniformly from the set of
orthogonal matrices.

For the case ` > 1 it is more common in the literature [7] to sample p(j) independently and uniformly on
the sphere, but in our case, to satisfy Assumptions (P.1) and (P.2), the columns of P must be orthonormal,
consistent with [33]. The advantage of a matrix P with orthonormal columns is discussed at length in
[33], we remark here merely that this property is required to obtain our results and to connect Algorithm 1
with discrete gradient descent when ` = d; indeed consider that when p(j) are sampled independently and
uniformly on the sphere, which we denote as p(j) iid∼ U(S(0, 1)), the gradient estimate is

∇f(x) ≈ 1

`

∑̀
j=1

p(j) f(x+ p(j)h)− f(x)

h
, p(j) iid∼ U(S(0, 1)),

with the discrete gradient recovered only as `→∞. In contrast, the approximation

∇f(x) ≈ P

f(xk+p(1)h)−f(x)

h
...

f(xk+p(`)h)−f(x)
h

 , p(j) columns of Haar

and the discrete gradient is recovered whenever ` = d due to the orthogonality of the Haar distributed random
matrix.

Gaussian smoothing The Gaussian smoothing framework first described in the technical report [39] and
later in [40] does not fit into our framework because the columns do not have unit norm. However, spherical
smoothing, which is covered by our framework, can be thought of as a normalized version of Gaussian
smoothing since a Haar distributed random matrix is generated by orthonormalizing a Gaussian random
matrix. It is shown in [7] that spherical smoothing provides better approximations to the gradient than does
Gaussian smoothing.

The intuition behind this statement is both illuminating and simple to provide. In Gaussian smoothing,
P =

√
dz where z ∼ N (0, 1). Then, ∇f(x) ≈ (1/h)(f(x + zh) − f(x))z. Since z has infinite support,

the finite difference stepsize varies with each iteration irrespective of the value of h. Thus the approximation
of the gradient has a positive probability of being arbitrarily bad even when the direction chosen is near to
the direction of the gradient! With spherical smoothing, the directions chosen are identical, but the finite
difference stepsize is always of length h which leads to more consistent and predictable results.

41

Remark 9.13. The literature is scarce but growing when it comes to convergence results for many of the
above-mentioned methods in the finite difference setting. There has been plenty of attention to analyzing
these methods when exact directional derivatives are available (i.e., the setting of (2.2), see, e.g., [55, 33, 5,
56]), but implementing the algorithms they analyze requires access to exact directional derivatives (e.g., via
forward-mode automatic differentiation). Generally speaking, practical implementations of these algorithms
often do not use automatic differentiation software – either because it is not feasible, or because it is too
restrictive and time consuming – relying instead on function evaluations and finite difference approximations
of the gradient.

9.2 Previous works

The limit definition of the derivativemakes it natural to estimate the gradient via finite differences, themethod
of finite difference gradient descent goes back to Cauchy [14]. For a more modern treatment we can look
to the seminal paper of Kiefer and Wolfowitz [30] which extends the results of Robbins and Monro [46] on
stochastic approximation to the case where the gradient is approximated by a central finite difference. In
[30] it is shown that with sufficiently fast decaying stepsize and finite difference step, the iterates converge
asymptotically to the minimizer of a function under regularity conditions on the specified function. The
setting of [30] differs from that of this paper by accessing only stochastic approximations of the function
that is being minimized whereas we assume the function can be queried exactly, allowing for much stronger
results.

Kushner and Clark [34, pg. 59-61] explore the asymptotic properties of what is now known as spherical
smoothing, a special case of our algorithm. They work in a slightly different setting, adopting the noisy func-
tion evaluations case of Kiefer and Wolfowitz and making more assumptions on the objective function such
as twice-differentiability. Again, the results are weaker and less general than those we provide. For their
algorithm and under their regularity assumptions, Kushner and Clark are able to show that the iterates of
their algorithm converge to a minimizer. Their analysis provided the basis for much subsequent work. Spall
[51] compares his work to that of Kushner and Clark with the notable difference being that Spall does not
choose directions uniformly on the sphere, but from a more general, unspecified, mean-zero distribution; this
is perhaps the clearest intellectual predecessor to Gaussian smoothing, which is discussed below, because
it includes Gaussian smoothing as a special case. The generality of Spall’s results requires him to assume
thrice-differentiability of the objective function. A main beneficiary of the work of Kushner and Clark is
the reinforcement learning community which has adopted their method and renamed it evolutionary strate-
gies. These evolutionary strategies were first described by Williams [53], who called them REINFORCE
algorithms. Williams was apparently unaware of the work of Kushner and Clark and suggested that "While
there is a clear need for an analytical characterization of the asymptotic behavior of REINFORCE algorithms,
such results are not yet available, leaving simulation studies as our primary source of understanding of the be-
haviour of these algorithms". Subsequent literature that makes use of evolutionary strategies (e.g., [15, 48])
typically mention Williams as the forebear for these methods, while some mention Spall’s work in providing
convergence properties, and many mention the work of Nesterov [39] discussed below. Of particular note is
[22], which works in the setting of Kushner and Clark but frames it as a reinforcement learning problem and
provides finite-time results in expectation. See also [1].

The asymptotic behavior of discrete gradient descent with exact function queries is investigated in [56]
which provides an upper bound on the level sets of the limiting function values, as well as a radius of con-
vergence for the iterates. The setting is somewhat restrictive, with the objective f assumed to be γ-strongly
convex with λ Lipschitz gradient, and only asymptotic properties are provided. A method for performing
finite difference coordinate descent is described and analyzed in [56], however the method described therein

42

uses coordinates only as directions, no approximate derivative (i.e., finite difference) information is used.
Nesterov published a technical note [39] in 2011, and later a peer-reviewed article with Spokoiny [40]

analyzing the convergence behaviour of a finite difference optimization algorithm in which the direction of
descent is chosen according to a Gaussian distribution in the following manner. Let U ∼ N (0, Id), then the
direction of descent is U(f(x+ Uh)− f(x))/h ≈ ∇f(x).

Though they do not analyze any particular algorithm, Berahas et al. [7] provide a thorough comparison of
the quality of various derivative-free approximations of the gradient. Included in their analysis are finite dif-
ference (and by simple corollary, coordinate descent), Gaussian smoothing, and spherical smoothing. Their
work provides the framework required for analysis of any gradient-based descent algorithm based on finite
difference approximations, analysis that is particularly useful in the related paper [8] which describes a line
search method appropriate for gradient descent algorithms when the gradient is known only approximately.
Expected rates of convergence are provided in [8] under a variety of convexity assumptions when the gradient
is approximated using any of the methods discussed in [7].

The algorithm analyzed in [33] is identical to (2.2). They discuss but do not analyze Algorithm (1), which
is the primary focus of our work. Furthermore, we provide stronger results in the convex case using (2.2):
we prove almost sure convergence of the iterates to a minimizer (cf. Theorem 5.12) whereas in [33] only
expected results are provided, and only for the function values.

Trust-region methods are a class of derivative-free optimization algorithms that we do not explore here,
we note merely that recent work analyzes a stochastic subspace method that is analogous to ours for the
trust-region framework, specifically for non-linear least squares problems [12] .

Acknowledgements

L.R. acknowledges support from the Center for Brains, Minds and Machines (CBMM), funded by NSF STC
award CCF-1231216, and the Italian Institute of Technology. L.R. also acknowledges the financial support of
the European Research Council (grant SLING 819789), the AFOSR projects FA9550- 18-1-7009, FA9550-
17-1-0390 and BAA-AFRL-AFOSR-2016-0007 (EuropeanOffice of Aerospace Research andDevelopment),
and the EU H2020-MSCA-RISE project NoMADS - DLV-777826. This material is based upon work sup-
ported by the Air Force Office of Scientific Research under award number FA8655-20-1-7028. This work
has been supported by the ITN-ETN project TraDE-OPT funded by the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement No 861137.

43

	1 Introduction
	2 Problem statement
	3 Main results
	4 Preliminaries
	4.1 Notation and stepsize assumptions
	4.2 Auxiliary bound
	4.3 A quasi-descent lemma

	5 Convex case
	5.1 Fejér monotonicity
	5.2 Non-vanishing dicretization
	5.3 Basic results with coarser discretization
	5.4 Improved results with finer discretization
	5.5 Convergence results for recursion (2.2)

	6 Polyak-Łojasiewicz case
	6.1 Main estimate
	6.2 Linear quasi-rate
	6.3 Sublinear rates
	6.4 Linear rate

	7 Numerical results
	8 Conclusions
	9 Supplementary material and auxiliary lemmas
	9.1 Special cases of the algorithm
	9.2 Previous works

