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A B S T R A C T

A fractional-order filter approximation is developed for a wind turbulence stochastic excitation model. Specif-
ically, the unknown filter parameters are determined by minimizing the error in the frequency domain between
the original and the approximate power spectral densities. It is shown that compared to the limiting case of a
standard integer-order filter, and for the same number of parameters to be optimized, the determined fractional-
order filter with derivative elements of rational order yields enhanced accuracy. Further, the developed filter
approximation enables the analytical calculation of stationary response moments of linear structural systems at
practically zero computational cost. This is done by employing a complex modal analysis treatment of the filter
state-variable equations, and by relying on Cauchy’s residue theorem for evaluating analytically the related
random vibration integrals. Comparisons with estimates based on Monte Carlo simulation data demonstrate a
quite high degree of accuracy.

1. Introduction

Uncertainty modeling in the field of stochastic structural dynamics
precedes the challenge of uncertainty propagation, and relates to the
development of methodologies for analyzing measured data and for
estimating pertinent stochastic models (e.g., Refs. [1–3]). In this regard,
a wide range of excitations acting on structural systems are modeled,
realistically, as stochastic processes. Depending on the quality and
quantity of the available data, information about the underlying vector
stochastic process is provided, typically, in the form of a power spectral
density (PSD) matrix that shows, loosely speaking, the distribution of
the process second-order statistics over the frequency domain.

Further, addressing the challenge of uncertainty propagation relates
to solving stochastic differential equations governing the structural
system dynamics; see Refs. [4–9] for a broad perspective on various
solution techniques that have been developed in the field of stochastic
structural dynamics over the past six decades. Notably, a common de-
nominator in the aforementioned solution techniques is the role of the
excitation process PSD as the input in the uncertainty propagation
problem. Representatively, purely numerical solution schemes based on
Monte Carlo simulation (MCS) rely on the development of methodolo-
gies for producing realizations compatible with the excitation PSD (e.g.,

Refs. [10,11]). Moreover, for linear systems, an analytical solution
treatment is possible, first, by relying on a pivotal, closed-form, inpu-
t-output relationship between the excitation and the response PSD, and
second, by integrating the response PSD for determining response sta-
tistical moments (e.g., Refs. [6,12–14]).

It can be readily seen that the form of the input/excitation PSD, as
estimated based on experimental data, affects significantly the accuracy
degree and the computational efficiency exhibited by the solution
techniques. In this regard, various modifications and/or approximations
of the input PSD have been employed for reducing the overall cost
associated with the uncertainty propagation problem. For example, as
shown in Ref. [15], a minor modification in a popular model of auto-
correlation function (defined as the inverse Fourier transform of the
PSD) yields enhanced efficiency in the spectral representation of the
underlying process via the Karhunen-Loeve expansion. This is of sig-
nificant importance to a certain class of stochastic finite element solu-
tion techniques (e.g., Ref. [16]). Also, as shown in Ref. [17], due to
certain mathematical peculiarities in its form, the Pierson-Moskowitz
sea wave PSD needs to be slightly modified to be used within an effi-
cient MCS solution scheme based on an auto-regressive model
representation.

Further, filter approximations of the input/excitation PSD have been
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catalytic for enhancing the versatility of various solution techniques (e.
g., Refs. [18,19]). Indeed, modeling a general, non-white, excitation
process as the output of a filter subjected to white noise input enables
casting the governing equation of motion into an equivalent form
exhibiting Markovian response. This equivalent form is of reduced
mathematical complexity compared to the original one, and thus, can be
handled by well-established solution techniques more easily. As a result,
extensions of a wide range of solution techniques to treat non-white
excitation processes are possible, in a straightforward manner, without
any modifications of their original formulation. Of course, this is done at
the expense of considering additional state variables and auxiliary
equations. In passing, note that, in a similar manner, filter approxima-
tions of the system have also benefited considerably the efficient
calculation of response statistics (e.g., Refs. [20–22]).

Furthermore, evaluating analytically random vibration integrals for
determining statistical moments corresponding to the response of linear
systems has been a persistent challenge in the field of stochastic struc-
tural dynamics (e.g., Refs. [14,23–25]). In this regard, a filter approxi-
mation treatment of the input/excitation PSD has been employed,
routinely, for rendering the related integrands amenable to analytical
integration based, for instance, on Cauchy’s residue theorem (e.g.,
Ref. [26]), or on a spectral moments equations approach (e.g.,
Ref. [27]). Representatively, several filter approximations with varying
degrees of accuracy have been proposed in Ref. [28] and in Ref. [27] for
treating wave and wind excitations, respectively. Accordingly, the
response statistical moments have been obtained analytically at practi-
cally zero computational cost.

Note, however, that the aforementioned efforts refer to approxima-
tions of the excitation PSD based on filters with integer-order de-
rivatives. In fact, focusing on the field of wind engineering, the vast
majority of the developed approximate/analytical solution methodolo-
gies rely on ordinary calculus concepts and tools (e.g., Refs. [29–33]). In
this context, it has been shown that fractional calculus, which can be
construed as a generalization of ordinary calculus, provides enhanced
modeling capabilities (e.g., Refs. [34–36]). Indeed, as a representative
example, the celebrated Kanai-Tajimi excitation PSD in earthquake en-
gineering was recently generalized in Ref. [37] by considering
fractional-order derivatives in the model. It was further shown that this
alternative PSD model that is, in essence, a fractional-order filter to
white noise input, exhibits certain advantages compared to the standard
model, such as a more realistic representation of the soil viscoelastic
behavior.

In this paper, a fractional-order filter approximation is developed for
the wind turbulence stochastic excitation model proposed in Ref. [38].
Specifically, the unknown filter parameters are determined by mini-
mizing the error in the frequency domain between the original and the
approximate PSDs. It is shown that compared to the limiting case of a
standard integer-order filter, and for the same number of parameters to
be optimized, the determined fractional-order filter with derivative el-
ements of rational order yields enhanced accuracy. Further, the devel-
oped filter approximation enables the analytical calculation of
stationary response moments of linear structural systems at practically
zero computational cost. This is done by employing a complex modal
analysis treatment of the filter state-variable equations, and by relying
on Cauchy’s residue theorem for evaluating analytically the related
random vibration integrals. Comparisons with estimates based on MCS
data demonstrate a quite high degree of accuracy. Notably, a significant
advantage of the technique relates to the fact that the exhibited accuracy
degree for determining system response statistics can be controlled by
the analyst by considering, representatively, higher-order filter ap-
proximations of the input turbulence model.

2. Preliminaries

Consider the wind speed recorded at a point in space associated with
a synoptic event, such as tropical and extra-tropical cyclones. The

recorded wind speed v(t) can be approximated with reasonable accuracy
as a stationary Gaussian process [39]. Further, it can be decomposed
into a mean and a fluctuating parts as

v(t)= v+ υ(t) (1)

where v is the mean wind speed and υ(t) represents the alongwind tur-
bulent fluctuation modeled as a zero-mean stationary Gaussian process
with standard deviation συ. Note that various models have been pro-
posed in the literature for the PSD corresponding to υ(t) [40]. Repre-
sentatively, and without loss of generality in the ensuing analysis, a
quite popular model in wind engineering relates to the, normalized by
σ2

υ , one-sided PSD [38]

ωSυ(ω)

σ2
υ

=
1
2π

dυωLυ/v
[

1 + 1.5 dυLυ
2πv ω

]5/3 (2)

where Lυ is the integral length scale of the turbulence that depends on
the height above the terrain, dυ = 6.868 is a constant associated with the
horizontal component of the wind velocity, and ω is the circular fre-
quency.

Next, consider a stochastically excited linear Single-Degree-Of-
Freedom (SDOF) oscillator whose equation of motion is given by

ẍ(t)+2ξω0ẋ(t) + ω2
0x(t) =

1
m
f(t) (3)

In Eq. (3), m denotes the mass, ω0 represents the natural frequency, and
ξ is the damping ratio. Considering next relatively small values of υ(t)
compared to the mean velocity v, f(t) is given by [41]

f(t)= ρAcDvυ(t) (4)

In Eq. (4), ρ is the air density, A is the surface of the oscillator normal to
the wind velocity, and cD is the corresponding drag coefficient. Based on
Eq. (4), the PSD of f(t) takes the form

Sf (ω)= (ρAcDv)2Sυ(ω) (5)

Further, the oscillator stationary response PSD is given by the cele-
brated input-output (excitation-response) spectral relationship of the
linear random vibration theory (e.g., Ref. [6]); that is,

Sx(ω)= (ρAcDv)2
|H(ω)|2Sυ(ω) (6)

where the frequency response function H(ω) takes the form

H(ω)=
1
m

1
ω2

0 − ω2 + 2iξω0ω (7)

Notably, a significant advantage of the algebraic Eq. (6) relates to the
fact that the oscillator stationary response variance can be obtained by
simply integrating the response PSD over the frequency domain, i.e.,

σ2
x =

∫+∞

0

Sx(ω)dω (8)

3. Fractional-order filter approximation of the wind turbulence
spectrum

Note that, due to the form of Sυ(ω) given by Eq. (2), the analytical
evaluation of the integral of Eq. (8) is a rather daunting, if not impos-
sible, task. More generally, evaluating analytically random vibration
integrals for determining statistical moments corresponding to the
response of linear structural systems has been a persistent challenge in
the field of stochastic structural dynamics [6]. In this regard, one of the
most versatile approaches for circumventing this challenge relates to a
filter approximation treatment of the excitation process. Succinctly
stated, the rationale relates to representing the excitation process as the
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output of a dynamic system (filter) subjected to a white noise input. In
this manner, the numerical computation of the relevant integrals can be
replaced by analytical integration based, for instance, on Cauchy’s res-
idue theorem (e.g. Ref. [26]), or on a spectral moments equations
approach [12]. Representatively, several filter approximations with
varying degrees of accuracy have been proposed in Ref. [28] and in
Ref. [27] for treating wave and wind excitations, respectively. Accord-
ingly, closed form expressions for the response moments have been
obtained at zero computational cost. This is particularly important for
higher-dimensional Multi-Degree-Of-Freedom (MDOF) systems for
which the cost associated with the numerical calculation of the response
moments becomes non-trivial (e.g., Refs. [22,27]).

However, note that the aforementioned research efforts rely on or-
dinary calculus and employ time-domain filters with integer-order de-
rivatives. In this regard, it can be argued that an alternative modeling
that utilizes filters with non-integer-order derivatives exhibits certain
advantages compared to the standard approach. Indeed, fractional cal-
culus can be construed as a generalization of ordinary calculus, and as
such provides with enhanced modeling capabilities [34–36]. In fact,
considering the same number of unknowns in the filter approximation of
Eq. (2), it is shown herein that a fractional-order filter with derivative
elements of rational order yields improved accuracy compared to a
related integer-order filter. Notably, the latter can be viewed as a
limiting case of the former.

Specifically, the wind fluctuating component υ(t) is represented as
the response of a linear dynamic system (filter) with fractional deriva-
tive terms under white noise excitation. In particular, the filter equation
takes the form

p
(

dυ
Lυ

v

)2

ϋ(t)+ q
(

dυ
Lυ

v

)β(

CD
β
0υ
)
(t)+ rυ(t)=w(t) (9)

Where w(t) is a white noise stochastic process with constant PSD S0, p, q
and r denote real coefficients to be identified, CD

β
0 is the Caputo frac-

tional derivative of order β∈ (0,1] given by

(

CD
β
0υ
)
(t)=

1
Γ(1 − β)

∫t

0

(t − τ)− βυ̇(τ)dτ (10)

with Γ(z) the gamma function defined as

Γ(z)=
∫+∞

0

tz− 1e− tdt (11)

In passing, note that for the limiting case β = 1 the Caputo fractional
derivative in Eq. (9) degenerates to an ordinary derivative, i.e.,
(

CD
β
0υ
)
(t) = υ̇(t), and the filter becomes of integer order. Further, the

frequency response function corresponding to Eq. (9) takes the form

Hf (ω)=
1

p
(

dυ
Lυ
v

)2

(iω)
2
+ q

(

dυ
Lυ
v

)β

(iω)β
+ r

(12)

Thus, the PSD of the wind fluctuating component υ(t) is expressed as

Sυ(ω)=
⃒
⃒Hf (ω)

⃒
⃒2S0 (13)

Next, substituting Eq. (13) into Eq. (6) yields the oscillator response PSD

Sx(ω)= (ρAcDv)2
|H(ω)|

2⃒⃒Hf (ω)
⃒
⃒2S0 (14)

Further, substituting Eq. (14) into Eq. (8), the oscillator stationary
response variance is expressed as

σ2
x =(ρAcDv)2S0

∫+∞

0

|H(ω)|2
⃒
⃒Hf (ω)

⃒
⃒2dω (15)

Clearly, the proposed filter approximation treatment requires the iden-
tification of the parameters p, q, r, β and S0 in Eq. (9). Regarding the
excitation PSD constant value S0 , considering Eqs. (2), (12) and (13)
yields

S0 =
1
2π

σ2
υdυLυ

v
(16)

In the following sections 3.1 and 3.2, integer- and fractional-order
filters are determined, respectively. In this regard, the fractional deriv-
ative order β is set either equal to 1 (integer-order filter), or equal to 5/6
(fractional-order filter) so that terms with powers 5/3 appear in the
frequency domain, as is the case with the denominator of the original Eq.
(2). Further, the parameters p, q and r are determined by employing a
numerical optimization scheme [42], and by minimizing the error be-
tween Eqs. (2) and (13). Note that caution should be exercised to ensure
that the identified model of Eq. (13) (or, equivalently, of Eq. (9)) rep-
resents a stable system in the bound-input-bound-output sense (e.g.,
Ref. [43]). Otherwise, utilizing Eq. (9) for performing time-domain
response analyses within an MCS context does not warrant stability in
the sense of the system reaching stationarity from a quiescent initial
state. In this context, an extended Routh-Hurwitz criterion [44] is
employed in the numerical example of section 5.1 for examining the
stability of the identified fractional-order model governed by Eq. (9).

3.1. Integer-order filter approximation

It is readily seen that for the limiting case β = 1 Eq. (9) degenerates
to a standard linear second-order stochastic differential equation; that is,

p
(

dv
Lv
v

)2

ϋ(t)+ q
(

dv
Lv
v

)

υ̇(t)+ rυ(t)=w(t) (17)

Accordingly, the frequency response function of Eq. (12) becomes

Hf ,I(ω)=
1

p
(

dυ
Lυ
v

)2

(iω)2
+ q

(

dυ
Lυ
v

)

(iω) + r
(18)

In general, this kind of integer-order filter approximation has been
widely used in various diverse applications in engineering dynamics (e.
g., Refs. [19,22,27,28,45]). Notably, depending on the desired degree of
accuracy, higher-order filter approximations can be readily accounted
for within the same framework at the expense, of course, of additional
computational cost related to the augmented vector of unknown co-
efficients (e.g., Refs. [22,28]).

3.2. Fractional-order filter approximation

As noted previously, for the general case of a fractional-order de-
rivative with β ∈ (0,1), the form of Eq. (2) serves as a guide for selecting
the value of β in an a priori manner. In this regard, the value β = 5/6 is
employed so that terms with powers 5/3 appear in the filter approxi-
mation in the frequency domain; thus, matching the power 5/3 in the
denominator of the original Eq. (2). In this regard, Eq. (9) becomes

p
(

dv
Lv
v

)2

ϋ(t)+ q
(

dv
Lv
v

)5/6(

CD
5/6
0 υ

)
(t)+ rυ(t)=w(t) (19)

and Eq. (12) takes the form

Hf (ω)=
1

p
(

dυ
Lυ
v

)2

(iω)
2
+ q

(

dυ
Lυ
v

)5/6

(iω)5/6
+ r

(20)
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Obviously, setting β = 5/6 also has the advantage of reducing the
number of unknowns to be identified by the numerical optimization
scheme. Alternatively, β can be treated as an additional free variable to
be identified.

4. Advantages of the filter approximation for determining
oscillator response statistics

In this section it is shown that the filter approximation proposed in
Eq. (9) enables the analytical derivation of closed-form expressions for
the linear oscillator response variance. In this regard, the stationary
response variance given by Eq. (8) is determined at practically zero
computational cost. This is done by employing a spectral moments
equations approach (e.g., Refs. [6,12]) for the case of integer-order fil-
ter, and by resorting to Cauchy’s residue theorem (e.g., Refs. [25,26])
for the case of fractional-order filter.

4.1. Integer-order filter approximation

For the case of integer-order filter, Eq. (15) becomes

σ2
x =(ρAcDv)2S0

∫+∞

0

|H(ω)|
2⃒⃒Hf ,I(ω)

⃒
⃒2dω (21)

Considering Eqs. (7) and (18), Eq. (21) is cast, equivalently, in the
form

σ2
x =(ρAcDv)2S0I4 (22)

where

I4 =
1
2

∫+∞

− ∞

1
Λ4(iω)Λ4(− iω)

dω (23)

and

Λ4(iω)=
1
m
[
δ4(iω)

4
+ δ3(iω)

3
+ δ2(iω)

2
+ δ1(iω)+ δ0

]
(24)

with

δ4 = p
(

dv
Lv
v

)2

(25)

δ3 =2ξω0p
(

dv
Lv
v

)2

+ q
(

dv
Lv
v

)

(26)

δ2 = p
(

dv
Lv
v

)2

ω2
0 +2ξω0q

(

dv
Lv
v

)

+ r (27)

δ1 = q
(

dv
Lv
v

)

ω2
0 + 2ξω0r (28)

δ0 = rω2
0 (29)

Next, following a standard spectral moments equations approach [6,12],
the integral of Eq. (23) can be evaluated analytically as

I4 =
π

2δ4

|Θ1|

|Θ0|
(30)

where

Θ1 =

⎛

⎜
⎜
⎝

0 0 0 1
− δ4 δ2 − δ0 0
0 − δ3 δ1 0
0 δ4 − δ2 δ0

⎞

⎟
⎟
⎠ (31)

Θ0 =

⎛

⎜
⎜
⎝

δ3 − δ1 0 0
− δ4 δ2 − δ0 0
0 − δ3 δ1 0
0 δ4 − δ2 δ0

⎞

⎟
⎟
⎠ (32)

Further, combining Eq. (22) and (30)-(32) yields

σ2
x =
dvLvv(ρAcDσv)2

4ξm2ω3
0qr

Ω(p, q, r, dv, Lv, v, ξ,ω0) (33)

where Ω is a function of the parameters p, q, r, dv, Lv, v, ξ,ω0 given by

Clearly, due to the integer-order filter approximation of Eq. (17), the
oscillator stationary response variance given by Eq. (33) has been
derived in closed form, at zero computational cost. Also, note that the
analytical calculation of the integral in Eq. (8) is exact, and the only
source of error relates to the input (excitation PSD) modeling.

4.2. Fractional-order filter approximation

For the fractional-order filter, a state-variable formulation of Eq. (19)
is employed in conjunction with a complex modal analysis for decou-
pling the resulting system of equations (e.g., Refs. [46–48]). Notably, the
eigenvalues corresponding to the complex modal analysis treatment are
determined herein, analytically, based on an approximate solution
approach; see also [49] for a somewhat similar solution treatment based
on perturbation theory. Next, applying Cauchy’s residue theorem (e.g.,
Ref. [25]), a closed-form expression is derived for the oscillator sta-
tionary response variance given by Eq. (8).

Specifically, Eq. (19) is recast, equivalently, in the form [47,48]

∑n

j=1
cj
(

CD
j/b
0 υ

)
(t)+ υ(t)=w(t) (35)

where β = a/b, a = 5, b = 6, n = 2b and cj = 0 ∀ j ∕= a, n with c5 =

q
(

dvLvv

)5/6
and c12 = p

(

dvLvv

)2
. Next, considering the state-variable

vector

Ω=

qr + 2ξdvLvvω0

[

q2 +

(

dvLvv

)2

ω2
0p2

]

+ 4ξ2
(

dvLvv

)2

ω2
0pq

(

dvLvv

)2

ω2
0q2 +

[

r −
(

dvLvv

)2

ω2
0p
]2

+ 2ξdvLvvω0q
[

r +
(

dvLvv

)2

ω2
0p
]

+ 4ξ2
(

dvLvv

)2

ω2
0 pr

(34)
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zT(t)=
[
υ(t)

(

CD
1/b
0 υ

)
(t)

(

CD
2/b
0 υ

)
(t) …

(

CD
(n− 1)/b
0 υ

)
(t)

]
(36)

Eq. (35) becomes

A
(

CD
1/b
0 z

)
(t)+Bz(t)= g(t) (37)

where

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1 c2 ⋯ cn− 1 cn
c2 c3 ⋯ cn 0
⋮ ⋮ ⋱ ⋮ ⋮
cn− 1 cn ⋯ 0 0
cn 0 ⋯ 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

r 0 ⋯ 0 0
0 − c2 ⋯ − cn− 1 − cn
⋮ ⋮ ⋱ ⋮ ⋮
0 − cn− 1 ⋯ 0 0
0 − cn ⋯ 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and gT(t)= [w(t) 0 … 0]

(38)

Further, to decouple the system of equations shown in Eq. (37), an
eigenvalue analysis of the matrix

D=A− 1B=
1
cn

⎡

⎢
⎢
⎢
⎢
⎣

0 − cn ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 − cn
r c1 ⋯ cn− 2 cn− 1

⎤

⎥
⎥
⎥
⎥
⎦

(39)

yields the eigenvectors matrix Ψ. Next, employing the complex modal
transformation

z(t)=Ψp(t) (40)

substituting Eq. (40) into Eq. (37), and pre-multiplying by ΨT , leads to

Ud

(

CD
1/b
0 p

)
(t)+Vdp(t)= g̃(t) (41)

In Eq. (41), g̃(t) = ΨTg(t), and Ud, Vd are diagonal matrixes given by

Ud =ΨTAΨ (42)

Vd =ΨTBΨ (43)

with μj and ςj denoting the elements in the diagonals of Ud and Vd,
respectively. Clearly, Eq. (41) is an uncoupled system of n modal
equations, where the j-th equation takes the form
(

CD
1/b
0 pj

)
(t)+ λjpj(t)= ε1jw(t) j= 1,…, n (44)

In Eq. (44), λj = ςj/μj are the eigenvalues of D, and ε1j = ψ1j/ μj. In
this regard, the solution of Eq. (35) can be expressed as

υ(t)= z1(t) =
∑n

j=1
ψ1jpj(t) (45)

and the PSD of the stationary process υ(t) is given by [6,47]

Sυ(ω)= S0

∑n

j=1

∑n

k=1

ψ*
1jψ1kSpjpk (ω) (46)

where

Spjpk (ω)=
ε*

1jε1k
( ̅̅̅̅̅̅̅̅̅

− iωb
√

+ λ*
j

)( ̅̅̅̅̅
iωb

√
+ λk

) (47)

Thus, substituting Eq. (46) into Eq. (6) yields

Sx(ω)= (ρAcDv)2S0|H(ω)|
2
∑n

j=1

∑n

k=1

ψ*
1jψ1kε*

1jε1k
( ̅̅̅̅̅̅̅̅̅

− iωb
√

+ λ*
j

)( ̅̅̅̅̅
iωb

√
+ λk

) (48)

Obviously, the eigenvalue problem pertaining to matrix D in Eq. (39)
can be readily solved numerically (e.g., Ref. [50]). However, it is shown
in the ensuing analysis that, alternatively, an approximate analytical
solution treatment of the eigenvalue problem yields a quite satisfactory
degree of accuracy. The interested reader is also directed to Ref. [49] for
a somewhat similar approximate solution treatment based on pertur-
bation theory.

Specifically, the characteristic polynomial corresponding to matrix D
takes the form

p
r

(

dv
Lv
v

)2

λ12 −
q
r

(

dv
Lv
v

)5/6

λ5 +1=0 (49)

or, equivalently,

p
q

(

dv
Lv
v

)7/6

λ12 − λ5 +
r

q
(

dvLvv

)5/6 =0 (50)

Next, focusing on the coefficient multiplying λ12 in Eq. (50), it is
shown in the numerical application of section 5.1 that the identified
parameters p, q are related so that p≪q, and in particular, p∝10− 4 and
q∝10− 1. Further, typical values provided by relevant codes (e.g.,
Ref. [51]) for the term Lv/v , which depends exclusively on wind speed
properties, are within the range of 4 s–170 s. In fact, even smaller values
correspond to the case of thunderstorms [52,53]. Thus, it is seen that the
coefficient multiplying λ12 in Eq. (50) is, approximately, at least two
orders of magnitude smaller than the unit coefficient multiplying λ5. In
this regard, based on the above rationale, the first term in Eq. (50) is
neglected, and the characteristic polynomial is approximated by

λ5 −
r

q
(

dvLvv

)5/6 =0 (51)

Notably, Eq. (51) can be readily solved analytically. Specifically,
considering a solution in the general complex polar form

λ= |λ|eiϑ (52)

substituting into Eq. (51), and manipulating, yields

|λ| =
(
v
dvLv

)1/6(r
q

)1/5

(53)

and

ϑ= k
2π
5

k = 1,…,5 (54)

Thus, relying on an approximate analytical treatment, 5 eigenvalues
(out of the original 12) associated with the characteristic polynomial of
Eq. (50) have been determined in the closed form given by Eqs. (52)–
(54). These eigenvalues are used in the ensuing analysis in Eqs. (46) and
(47) for approximating the PSD of the stationary process υ(t) by trun-
cating the summations accordingly. Note that the degree of accuracy
exhibited by the proposed analytical solution treatment is assessed in
section 5.1 by comparing the closed-form estimates of Eqs. (52)–(54)
with the eigenvalues obtained by solving numerically the characteristic
polynomial of Eq. (48). Further, the efficacy of the analytical estimates
of Eqs. (52)–(54) to approximate the PSD of υ(t) via Eqs. (46) and (47) is
demonstrated as well.

Overall, substituting the 5 eigenvalues of Eqs. (52)–(54) into Eq.
(48), and thus, considering in the summations 5 out of the n = 12 terms,
Eq. (15) yields the oscillator stationary response variance in the form
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σ2
x =(ρAcDv)2S0

∑5

j=1

∑5

k=1
ψ*

1jψ1kε*
1jε1kIjk (55)

where

Ijk=
∫+∞

0

|H(ω)|
2 dω
( ̅̅̅̅̅̅̅̅̅

− iωb
√

+ λ*
j

)( ̅̅̅̅̅
iωb

√
+ λk

) (56)

or, equivalently, by taking into account Eq. (7),

Ijk=
1
m2

∫+∞

0

dω
[( ̅̅̅̅̅̅̅̅̅

− iωb
√

+ λ*
j

)( ̅̅̅̅̅
iωb

√
+ λk

)][(
ω2

0 − ω2
)2

+ (2ξω0ω)2
] (57)

Next, the integral Ijk in Eq. (57) is calculated analytically based on
Cauchy’s residue theorem (e.g., Ref. [25]). In this regard, considering
the change of variables s =

̅̅̅̅
ωb

√
, Eq. (57) becomes

Ijk=
1
m2

∫+∞

0

bsb− 1
(
s+ i− 3/bλ*

j

)(
s+ i− 1/bλk

)(
ω2

0 − s2b+2ξω0sb
)(

ω2
0 − s2b − 2ξω0sb

)ds

(58)

Eq. (58) is written, equivalently, as

Ijk=
b
m2

∫+∞

0

fjk(s)ds (59)

where

fjk(s)=
sb− 1

(
s − s1,j

)(
s − s2,k

)
ΠNm=3(s − sm)

(60)

Note that the N = 4b+ 2 roots of the integrand function in Eq. (60)
are given by

s1,j = − i− 3/bλ*
j

s2,k = − i− 1/bλk

s3 = (− 1)2/b
(

ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

− iξω0

)1/b

s4 = (− 1)4/b
(

ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

− iξω0

)1/b

s5 = −

(

ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

− iξω0

)1/b

s6 = − s3
s7 = − s4
s8 = − s5

s9 = (− 1)2b
(

− ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

− iξω0

)1/b

s10 = (− 1)4/b
(

− ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

− iξω0

)1/b

s11 = −

(

− ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

− iξω0

)1/b

s12 = − s9
s13 = − s10

s14 = − s11

s15 = i2/bs9
s16 = i2/bs10

s17 = i2/bs11

s18 = − s15

s19 = − s16

s20 = − s17

s21 = i2/bs3
s22 = i2/bs4
s23 = i2/bs5
s24 = − s21

s25 = − s22

s26 = − s23

(61)

Further, an approach based on Cauchy’s residue theorem is
employed for calculating analytically the integral of Eq. (59); see also
[25] for more details. Specifically, consider the function

gjk(z)= fjk(z)Log(z) (62)

where z is a complex number with a polar form z = |z|eiϑ and Log(z) =

ln|z| + iϑ. Furthermore, the integral of gjk(z) over the boundary Γ = L1 ∪

CR ∪ L2 ∪ Cr of the domain shown in Fig. 1 is expressed as
∫

Γ
gjk(z)dz=

∫

CR
gjk(z)dz+

∫

Cr
gjk(z)dz+

∫

L1

gjk(z)dz+
∫

L2

gjk(z)dz (63)

where the curves CR, Cr, L1 and L2 are illustrated in Fig. 1, and are
defined so that [25]

CR : z = Reiθ,0 ≤ θ ≤ 2π;
Cr : z = reiθ,0 ≤ θ ≤ 2π;
L1 : z = ωeiθ, r ≤ ω ≤ R and θ→0;
L2 : z = ωei(2π− θ), r ≤ ω ≤ R and θ→0;

(64)

Next, taking the limits r→0 and R→+ ∞, and accounting for the fact
that the integrals over the curves CR and Cr become zero as shown in
Ref. [25], the integral of Eq. (63) takes the form

lim
r→0
R→+∞

∫

Γ

gjk(z)dz= − 2πi
∫+∞

0

fjk(s)ds (65)

Applying Cauchy’s residue theorem to Eq. (65), and considering Eq.
(59), yields [25].

Fig. 1. Complex domain of integration.
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Ijk= −
b
m2

∑N

l=1
Res

[
fjk(z)Log(z), sl

]
(66)

where

Res
[
fjk(z)Log(z), sl

]
= lim
z→sl

(z − sl)fjk(z)Log(z) (67)

Hence, substituting Eq. (66) into Eq. (55), the oscillator stationary
response variance is given by the closed-form analytical expression

σ2
x =
b(ρAcDσv)2dvLvv

2πm2

∑5

j=1

∑5

k=1

ψ*
1jψ1kε*

1jε1k

∑N

l=1

Res
[
fjk(z)Log(z), sl

]
(68)

5. Numerical application

In this section a numerical application of the filter approximations is
presented for demonstrating the advantages of the herein-developed
filter-based modeling framework. Specifically, first, the filter parame-
ters, both for the integer- and the fractional-order cases, are determined
based on a standard least-squares optimization scheme (e.g., Ref. [42]).
Next, the accuracy degree of the filter approximations for determining
oscillator response statistics is assessed by comparisons both with the
exact result obtained by integrating numerically Eq. (8) in conjunction
with the original filter of Eq. (2), and with pertinent MCS data (10,000
realizations). The parameter values used are σv = 1 m/s, and Lv = 27.7
m, v = 16.01 m/s according to Ref. [52].

5.1. Filter parameters optimization

To determine the filter parameters, a standard least-squares opti-
mization scheme is employed (e.g., Ref. [42]) for minimizing the error in
the frequency domain between the original PSD of Eq. (2) and the filter
approximation of Eq. (13). Table 1 shows the computed values of the
parameters p, q and r, both for the integer-order (β = 1) and the
fractional-order (β = 5/6) cases. In passing, note that, as anticipated by
the form of Eq. (13), the first optimization attempt yielded an estimate
for r that was approximately equal to 1. Thus, r was set equal to 1, and
the optimization was repeated for identifying the free variables p and q.

The two filter approximations are plotted in Fig. 2 and compared
with the original PSD. It is seen that, considering the same number of
unknown parameters in the optimization scheme (i.e., p, q and r), the
fractional-order filter exhibits a higher degree of accuracy in approxi-
mating the original PSD compared to the integer-order filter. This is
particularly true for the relatively high frequency range, where the
integer-order filter fails to capture satisfactorily the characteristics of the
original PSD; see Fig. 2b. Note that, alternatively, a cascade of integer-
order filters can be used that can yield, potentially, enhanced accuracy
(e.g., Ref. [28]). However, this translates into some additional compu-
tational effort due to the increased number of unknown parameters to be
identified. In passing, note that the stability both of the integer- and of
the fractional-order filters is demonstrated in the Appendix based on the
standard and on the extended Ruth-Hurwitz criteria, respectively [44].

5.2. Oscillator response variance

For the integer-order filter (β = 1), Eq. (33) is used for the oscillator
stationary response variance. For the fractional-order filter (β = 5/ 6),
Eq. (68) is utilized, which requires, first, an eigenvalue analysis of

matrix D. In this regard, numerical solution of the corresponding char-
acteristic polynomial of Eq. (49) yields the 12 eigenvalues plotted in
Fig. 3. Note that based on the optimal parameter values shown in
Table 1, the coefficient multiplying λ12 in Eq. (50) is equal to

p
q

(

dvLvv

)7/6
= 0.0185≪1. Thus, according to the rationale presented in

section 4.2, the approximate characteristic polynomial of Eq. (51) is
considered, and solved analytically yielding the eigenvalues of Eqs.
(52)–(54). These are also plotted in Fig. 3, where it is seen that they
practically coincide with the corresponding numerical estimates.

Next, Eq. (46) is used for determining the excitation PSD Sv(ω). This
is done both by employing the complete set of n = 12 eigenvalues
calculated by solving numerically the characteristic polynomial of Eq.
(49), and by utilizing only n = 5 terms in Eq. (46) corresponding to the
approximate analytical expressions of Eqs. (52)–(54). Comparisons in
Fig. 4 with the original PSD of Eq. (2) show that the approximation of Eq.
(46) with n = 5 terms based on Eqs. (52)–(54) yields a quite high degree
of accuracy. In fact, the PSD estimates based on Eq. (46) using n = 12
and n = 5 coincide, practically, with minor differences observed in the
relatively high frequency range. Thus, in the following, the approxi-
mation of Eq. (46) is used with n = 5 based on Eqs. (52)–(54).

Further, the accuracy degree of the filter approximations is assessed
with respect to determining the oscillator response PSD. In this regard,
the exact response PSD given by Eq. (6) in conjunction with the original
excitation of Eq. (2) is compared, for the integer-order filter (β = 1),
with results obtained by Eq. (14) in conjunction with Eq. (18), and for
the fractional-order filter (β = 5/6), with results obtained by Eq. (48) in
conjunction with n = 5 and Eqs. (52)–(54). This is done for two repre-
sentative sets of values for the oscillator parameters, i.e., a) ω0 = π/5
rad/s and ξ = 5%; and b) ω0 = 2π rad/s and ξ = 0.2%. Fig. 5 corre-
sponds to case a), where it is shown that the fractional-order filter ex-
hibits excellent accuracy in determining the response PSD. Note,
however, that also the integer-order filter approximation succeeds in
capturing, reasonably well, the salient characteristics of the response
PSD. This is expected since the frequency response function of the
oscillator in case a) corresponds to a frequency domain where, as shown
in Fig. 2, the approximation accuracy of the integer-order filter is quite
satisfactory. In contrast, regarding case b) shown in Fig. 6, the integer-
order filter underestimates significantly the resonance peak of the
response PSD. This is due to the fact that the oscillator frequency
response function corresponds to a relatively higher frequency range
where the integer-order filter exhibits a poor degree of accuracy as
shown in Fig. 2.

Next, representatively, for the oscillator with parameter values ω0 =

π/5 and ξ = 5%, the stationary response variances, estimated based on
Eq. (33) for the integer-order filter and on Eq. (68) for the fractional-
order filter, are plotted in Fig. 7. Comparisons both with the exact
result obtained by integrating numerically Eq. (8) in conjunction with
the original filter of Eq. (2), and with MCS-based estimates (10,000 re-
alizations), demonstrate a quite high degree of accuracy for the
fractional-order filter approximation. For the MCS analyses, the spectral
representation approach [10] has been employed for producing re-
alizations compatible with the excitation PSD, whereas a standard
4th-order Runge-Kutta integration scheme [54] has been used for solv-
ing numerically Eq. (3). Further, as anticipated based on Fig. 5, the
variance estimate obtained by relying on the integer-order filter
approximation underestimates the MCS-based result. Nevertheless, it
can be argued that it exhibits reasonable accuracy to be used for pre-
liminary analysis and design purposes. More importantly, it is empha-
sized that the analytical evaluation of the random vibration integral of
Eq. (8) via Eq. (33) is exact, and the only source of error relates to the
approximation of the input excitation via Eq. (17). In this regard, note
that the approximation degree can be controlled by the analyst by
considering, for instance, higher-order filter representations of the input
excitation (e.g., Ref. [28]). In contrast, this is not the case with

Table 1
Optimal parameters for the filter approximations of the excitation PSD.

Filter approximation p q r

Integer-order (β = 1) 3.0782⋅10− 10 0.3251 1
Fractional-order (β = 5/
6)

3.5776⋅10− 4 0.3447 1
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alternative approaches embedded in relevant design codes that rely on
quite strong assumptions and on rather crude simplifications for
computing approximately the random vibration integral of Eq. (8) (e.g.,
Refs. [41,51]).

6. Concluding remarks

In this paper, a fractional-order filter approximation has been
developed for the quite popular wind turbulence model proposed in
Ref. [38]. Specifically, it has been shown that, considering the same
number of unknown filter parameters in the associated optimization
problem, the herein-developed fractional-order filter with derivative
elements of rational order yields enhanced accuracy compared to a
related integer-order filter. Notably, the latter can be construed as a
limiting case of the former.

Further, it has been shown that the fractional-order filter approxi-
mation of the excitation PSD enables the analytical calculation of rele-
vant random vibration integrals, at practically zero computational cost,
for determining statistical moments corresponding to the response of
linear structural systems. This has been done by employing a complex
modal analysis treatment of the filter state-variable equations, and by
relying on Cauchy’s residue theorem. Comparisons both with the exact
result, obtained by integrating numerically in the frequency domain the
response PSD based on the original excitation model, and with pertinent
MCS data have demonstrated a quite high degree of accuracy.

Furthermore, it is emphasized that the analytical calculation, ach-
ieved herein, of the random vibration integral of Eq. (8) is exact, and the
only source of error relates to the approximation of the input excitation.

Fig. 2. Integer-order (β = 1) and fractional-order (β = 5/6) filter approximations of the excitation PSD; comparisons with the original PSD: a) linear scale, and b)
logarithmic scale.

Fig. 3. Eigenvalues of matrix D of Eq. (39); comparisons between numerical
calculation (blue) and approximate analytical estimates (red). (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)

Fig. 4. Fractional-order (β = 5/6) filter approximation of the excitation PSD; comparisons between the original PSD, Eq. (46) using the numerically calculated
complete set of n = 12 eigenvalues, and truncated Eq. (46) using n = 5 terms based on the approximate analytical expressions of Eqs. (52)–(54): a) linear scale, and b)
logarithmic scale.
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In this regard, note that the approximation degree can be controlled by
the analyst by considering, for example, higher-order filter representa-
tions of the input turbulence model. This is a significant advantage of the
technique compared to alternative approaches in the literature that have
been adopted by relevant design codes [51], and rely on quite strong
assumptions and on rather crude simplifications for computing
approximately the random vibration integral of Eq. (8).

Lastly, considering the fact that the cost associated with the nu-
merical calculation of response moments of higher-dimensional systems
becomes increasingly significant, the extension of the technique to ac-
count for MDOF structural systems and excitation PSD matrices is
identified as a topic of future work. Also, relying on recent work in
Ref. [55] can lead, perhaps, to the generalization of the technique to
treat systems endowed with fractional derivative elements, and to
determine not only the stationary but also the non-stationary stochastic
response.
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Fig. 5. Response PSD of a linear oscillator with parameter values ω0 = π/5 and ξ = 5%; comparisons between the integer-order (β = 1) filter approximation, the
fractional-order (β = 5/6) filter approximation, and the exact result: a) linear scale, and b) logarithmic scale.

Fig. 6. Response PSD of a linear oscillator with parameter values ω0 = 2π and = 0.2% ; comparisons between the integer-order (β = 1) filter approximation, the
fractional-order (β = 5/6) filter approximation, and the exact result: a) linear scale, and b) logarithmic scale.

Fig. 7. Response displacement variance of a linear oscillator with parameter
values ω0 = π/5 and ξ = 5%; comparisons between the integer-order (β = 1)
filter approximation, the fractional-order (β = 5/6) filter approximation, the
exact result obtained by numerical integration in the frequency domain, and
MCS-based estimates (10,000 realizations).
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Appendix

First, the standard Routh-Hurwitz criterion (e.g., Ref. [56]) is applied to the integer-order filter of Eq. (17). In this regard, the excitation-free
equation corresponding to Eq. (17) is cast in the state-variable form

V̇(t)=AV(t) (69)

where V(t) = [υ(t) υ̇(t)]T and

A=

⎡

⎢
⎢
⎣

0 1

−
r

p
(

dvLvv

)2 −
q

p
(

dv
Lv
v

)

⎤

⎥
⎥
⎦ (70)

The characteristic polynomial corresponding to matrix A in Eq. (70) takes the form

P(λ)= λ2 + a1λ + a2 = 0 (71)

where a1 =
q

p

(

dvLvv

) and a2 = r

p

(

dvLvv

)2.

According to the Routh-Hurwiz criterion (e.g., Ref. [56]), the system is stable if H1 = a1 > 0 and Det(H2) > 0 with

H2 =

[
a1 1
0 a2

]

(72)

Note that a1 > 0 and a2 > 0, and thus, the criterion is satisfied.
Next, the extended Routh-Hurwitz criterion [44] is applied to the fractional-order filter of Eq. (19). In this regard, the corresponding to Eq. (19)

excitation-free state-variable Eq. (37) becomes

I
(

CD
1/b
0 Z

)
(t)+DZ(t)=0 (73)

According to the extended Routh–Hurwitz stability criterion for fractional-order systems, the system is stable if
⃒
⃒arg

(
ιj
)⃒
⃒ >

π
2b

(74)

where ιj are the eigenvalues of the matrix − D.
Further, the numerically obtained eigenvalues related to − D are plotted in Fig. 8 in conjunction with the lower limit π

2b = 0.2618 on the right hand
side of Eq. (74) pertaining to the phase of the eigenvalues. Clearly, as shown in Fig. 8, criterion of Eq. (74) is satisfied.
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Fig. 8. Eigenvalues of matrix − D of Eq. (39).
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