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Abstract. Research in the Internet of Things (IoT) have paved the way to a new 

generation of applications and services that collect huge quantities of data from 

the field and do a significant part of the processing on the edge. This requires 

availability of efficient and effective methodologies and tools for a workflow 

spanning from the edge to the cloud. This paper presents a generic, complete 

workflow and relevant system architecture for field data collection and analysis 

with a focus on the human physical activities. The data source is given by a low-

cost embedded system that can be placed on the user body to collect heterogene-

ous data on the performed movements. The system features a 9 DoF IMU sensor, 

to ensure a high level of configurability, connected to a custom board equipped 

with a rechargeable battery for wireless data collection. Data are transmitted via 

Bluetooth Low Energy (BLE) to a smartphone/tablet app, which manages the 

data transfer to Measurify, a cloud-based open-source framework designed for 

building measurement-oriented applications. Results from a preliminary func-

tional experiment confirm the ability of the proposed end-to-end system archi-

tecture to efficiently implement the whole targeted edge-cloud workflow. 
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1 Introduction 

In the Internet of Things (IoT) scenario, collecting large amounts of data from sensors 

and storing them within a cloud database has become a major challenge [1]. The need 

for data is constantly increasing with the growing development and spread of ever new 

machine learning (ML) technologies that rely on supervised learning techniques, thus 

requiring datasets. 

For this reason, obtaining large amounts of data quickly and easily, while maintain-

ing high accuracy during acquisition, is crucial for training accurate ML models. For 
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this purpose, various runtime applications have been developed to handle the data gen-

erated by edge devices (e.g. [2]). The challenge is also to build a “smart” database that 

adapts as closely as possible to the resources being sent [3] and that allows data to be 

managed using a simple, lightweight and fast sending method, while still maintaining 

a high level of security during data exchange. One of the possible applications of this 

paradigm, based on an embedded system and requiring a flexible database due to the 

diversity of data to be collected, is the classification of specific actions during a human 

physical activity. Over the past decades, motion classification has been a constantly 

growing research area. Sensors are applied to the human body to accurately represent 

movements [4] and collect as much data as possible to best support the training of state-

of-the-art ML algorithms in a smart controlled environment [5]. 

In this paper, a data collection workflow is implemented from the physical sensor to 

a database to manage the measurements. This embedded system consists of an Arduino 

Nano 33 BLE Sense mounted on a custom board with a battery installed for autonomous 

energy support. The IMU sensor on the device provides accelerometer, gyroscope and 

magnetometer data that will be collected and sent to the database. We were looking for 

a flexible and data-oriented framework that best fit our use-cases, so the choice fell on 

Measurify, formerly Atmosphere [6], as it is an open-source, cloud-based, measure-

ment-oriented API Framework, which is connected to MongoDB[7] as database.  

A Flutter [8] application, that can be installed on any tablet or mobile phone device, 

is used to store in memory a great number of data received from Arduino without stop-

ping the data collecting phase, this maximizes the amount of data obtainable per minute 

and simplify the connection between the embedded system and Measurify.  

 The design choices aim to ensure that this workflow remains easily accessible by 

adopting an open-source approach, with all components available for download on 

Github [9]. The instrumentation is intentionally low-cost, using mainly Arduino as the 

only physical device, while all other components are free-to-use and can be hosted lo-

cally. This configuration allows for widespread adoption and easy replicability, making 

it feasible for a broad audience to participate in and benefit from the workflow. 

2 Workflow 

The proposed workflow can be decomposed into three main sectors as shown in Fig. 1: 

Edge, Fog, and Cloud. These represent the spectrum of distributed computing, from 

immediate data processing at the source (Edge), intermediate processing in local net-

works (Fog), to centralized processing and storage in remote servers (Cloud). The Edge 

consists of a versatile wearable embedded system designed to be attached to any part 

of the human body. Its primary function is to collect data while the wearer performs 

specific actions or activities. On the other hand, the Fog sector comprises a Flutter ap-

plication and a personal device, which together facilitate the visualization of the data 

obtained from the wearable embedded system. Lastly, the Cloud sector consist of the 

Measurify Framework, which acts as a receiver for data sent from the Flutter applica-

tion and saves them into a MongoDB database, enabling secure storage for future use 

and analysis. 
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Fig. 1. Workflow enabled by the proposed system architecture. 

The embedded system used consists of an Arduino NANO 33 BLE Sense soldered to a 

board as shown in Fig. 2, which allows a rechargeable battery to be installed in order 

to power the Arduino and data to be collected wirelessly. 

 

 

Fig. 2. Arduino board with battery: on the left, up-side prototype design; in the center, bottom-

side prototype design; on the right the board used. 

The board features the 9-axis IMU LSM9DS1 sensor: a 3D accelerometer with a default 

range [-4, +4] g -/+0.122 mg, 3D gyroscope with a default range [-2000, +2000] dps 

+/-70 mdps and 3D magnetometer with a default range [-4, +4] gauss +/-0.14 mgauss. 

With an LIR 2450 battery with a capacity of 120 mAh it is estimated that data can be 

collected for 6 consecutive hours. 

Sensor data are collected by the Arduino via a script with a minimum sampling pe-

riod of 5 ms and transmitted via Bluetooth Low Energy (BLE). The script sets up the 

Arduino to expose Bluetooth services with features that a device can subscribe to and 

be notified whenever new data are available. 

To receive these data, a custom application was developed for the subscription of the 

characteristics exposed by the Arduino and to assign a label to the measurement, and 

then send it via an HTTPS POST RESTful API to the Measurify framework in the 

format of timeseries, a type of data that contains the numerical values and the timestamp 

in which it was measured. 
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This application can be installed on a tablet or mobile phone and was developed using 

the open-source Flutter framework [8] and it connects to the embedded device via BLE 

and stores the received numerical data in memory. Once the user stops the data record-

ing, the stored dataset is sent to the Measurify’s timeseries route through a HTTPS 

POST. While the process is running, values are sent in blocks of 1000 samples as they 

are collected. Request’s body encapsulate values organized in JSON format. An exam-

ple of a timeseries sample is as follows: 

{ 

 "timestamp": "1684833177652", 

    "values": [-0.504883,-0.401733,-0.751587,32.959,-66.284,123.474,0,0,0] 

} 

This protocol minimizes the amount of space used during the calls and speeds up the 

data transmission. For the data visualization, it is possible to get the values via a HTTPS 

GET request from a personal device. The timeseries route, secured through authentica-

tion, allows user to retrieve previously inserted values in common formats: JSON, Pan-

das Dataframe, and CSV [10]. User can also filter measurements to obtain only samples 

in a specific period, or to retrieve only values exceeding a certain threshold. 

3 Results 

We performed a functional test for our system with a very simple preliminary data col-

lection experiment. For the test, the sampling period of the device was set to 250 ms 

and the default sensitivity values of the IMU sensors of the Arduino Nano 33 BLE 

Sense were used (Table 1). The dataset collected consists of the samples taken during 

the action of repeatedly raising and lowering an arm progressively increasing the move-

ment speed. To perform the test, we attached the Arduino near the wrist of the hand and 

started recording values. After 38 samplings, we stopped collecting data and the dataset 

was correctly uploaded to the database. As the speed of the movement increased, we 

expected a reduction in the number of timesteps required to complete the movement 

and also an increase of the acceleration vector. Using a Python script, we plotted the 

values of the accelerometer, gyroscope and magnetometer (Fig. 3).  

 

 

Fig. 3. Accelerometer, Gyroscope and Magnetometer plot of the movement replicated three 

times with incremental speed. 
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As expected, the plots show a movement reproduced three times at incremental speed, 

with a progressive decrease in the number of steps required to complete each action and 

an increase in the intensity of the acceleration vector. 

Given the target of making the supported workflow flexible and generic for different 

types of tracking, we defined a set of configurable parameters (e.g., to increase the 

amount of data collected per time unit or to increase the sensitivity of the sensors), as 

summarized in Table 1. 

Table 1. Configurable parameters. 

Variable Default Range Sensibility 

Sample Period 250 ms >5 ms  

Accelerometer ±4 g, ±0.122 mg ±2,±8,±16 g 0.061,0.244,0.732 mg 

Gyroscope ±2000 dps,±70 mdps ±245,±500 dps ±8.75, ±17.50 mdps 

Magnetometer ±4 gauss,0.14 mgauss ±8,±12,±16 gauss 0.29,0.43,0.58 mgauss 

4 Conclusion and future works 

Data collection and management have become an essential part in the development of 

ML models based on supervised learning. Therefore, it is crucial to obtain large 

amounts of data easily, quickly and accurately. One of the main challenges lies in build-

ing a workflow that starts with the edge device until it interfaces with a “smart” data-

base that adapts to the type of data being sent, ensuring also a secure connection. 

The proposed workflow offers a fully accessible, low-cost and user-friendly infra-

structure for the collection and management of data from embedded systems. This ap-

proach can be applied to various applications, including classification of human physi-

cal activities, providing high quality data for training advanced machine learning mod-

els.  

As future work, it is planned to integrate the study of ML techniques from the col-

lected data, in order to generate models that can be imported into the same Arduino 

used previously, obtaining a complete pipeline, from edge to cloud and back. This will 

increase the autonomy and efficiency of the system, enabling a rapid classification of 

the detected actions. 
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