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Abstract

Poor response to treatment is a defining characteristic of reading disorder. In the present systematic review and meta-analysis, we
found that the overall average effect size for treatment efficacy was modest, with a mean standardized difference of 0.38. Small
true effects, combined with the difficulty to recruit large samples, seriously challenge researchers planning to test treatment
efficacy in dyslexia and potentially in other learning disorders. Nonetheless, most published studies claim effectiveness, generally
based on liberal use of multiple testing. This inflates the risk that most statistically significant results are associated with
overestimated effect sizes. To enhance power, we propose the strategic use of repeated measurements with mixed-effects
modelling. This novel approach would enable us to estimate both individual parameters and population-level effects more
reliably. We suggest assessing a reading outcome not once, but three times, at pre-treatment and three times at post-treatment.
Such design would require only modest additional efforts compared to current practices. Based on this, we performed ad hoc a
priori design analyses via simulation studies. Results showed that using the novel design may allow one to reach adequate power
even with low sample sizes of 30-40 participants (i.e., 15-20 participants per group) for a typical effect size of d = 0.38.
Nonetheless, more conservative assumptions are warranted for various reasons, including a high risk of publication bias in the
extant literature. Our considerations can be extended to intervention studies of other types of neurodevelopmental disorders.
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Introduction that all treatment approaches result in modest effect sizes

(Galuschka, Ise, Krick, & Schulte-Korne, 2014). The estimat-

The issue of low power when assessing treatment
efficacy in dyslexia

Poor response to treatment is a defining feature of specific
learning disorders (American Psychiatric Association [APA],
2013). Therefore, even effective remediation programs may
deliver only small improvements. For example, a recent meta-
analysis of randomized controlled trials on dyslexia showed
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ed effect size (i.e., treatment-control standardized difference at
post-test, corrected for the pre-test scores) for the most fre-
quently used treatment approach as well as the only one for
which a statistically significant meta-analytic estimate
emerged, phonics instruction, was Hedge’s g = 0.32. This
effect size can be considered relatively small (Cohen, 1988).
In addition, this was further deflated to g = 0.20 after control-
ling for publication bias. The estimated effect sizes for the
other treatment approaches ranged between 0.13 and 0.39,
with a mean of 0.27. Therefore, large reported post-
treatment improvements in children with dyslexia should
probably be interpreted with caution. Large effect sizes may
be due to noisy estimates (e.g., large standard error due to
small sample size, unreliable reading measures) or inappropri-
ate diagnostic procedures (e.g., children’s low reading perfor-
mance being only transient and not due to dyslexia).

The difficulty in recruiting large enough samples, com-
bined with a small true effect size, is often regarded as the
major cause of low statistical power. The latter not only makes
it difficult to distinguish true results from false positive results,
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but also inflates the risk of overestimating effect sizes. This
risk can be defined a priori as the “exaggeration ratio” that
indicates how much an effect size will be overestimated on the
average in comparison with a plausible true effect size given
that statistical significance is reached (e.g., Gelman & Carlin,
2014; see also Alto¢ et al., 2020). Unfortunately, researchers
who test treatment efficacy in learning disorders frequently
encounter this problem. In this field, recruiting large samples
is difficult for different reasons. First, children with learning
disorders represent only a subset of the general population.
While this subset is epidemiologically relevant, it is small in
absolute terms, totalling no more than 5-10% of all children
(cf. DSM-5; APA, 2013). Second, studies on treatment effi-
cacy require considerable compliance from children and their
families, and several hours of their time, making it even more
difficult to perform treatment studies with large samples.

Calculating power—and the exaggeration ratio—in this
field may not be easy. It depends on several factors, including
what inferential analysis is performed, pretest—posttest reading
score correlation, and how the effect size is calculated.
Concerning inferential analysis, the best choice is perhaps
the use of linear models/ANCOVA on post-treatment scores,
testing the effect of group and covarying the pre-treatment
scores (e.g., Gelman, Hill, & Vehtari, 2020; Van Breukelen,
2006). Note that covarying pre-treatment scores here serve to
increase power by controlling for the individual baselines, not
to correct for initial group differences. Other methods such as
testing the group by time interaction or comparing gain scores
are also appropriate and lead to unbiased estimates, but they
may have slightly less power (e.g., Dimitrov & Rumirill, 2003;
Van Breukelen, 2006). The pretest—posttest scores correlation
is importantly related to the reliability of the outcome reading
measure that greatly affects power, as will be discussed in
detail later.

The calculation of effect size is not trivial, and different
formulae have been proposed. Reading scores, the skill
targeted by intervention in most reading treatments, are quan-
titative continuous measures (e.g., reading time/speed, error
rates). Thus, treatment efficacy can be expressed as a stan-
dardized difference between pre- and post-intervention scores.
Morris (2008) suggests calculating the pre-to-post change in
the treated group minus the pre-to-post change in the control
group, all divided by the pooled standard deviation calculated
from pre-test scores.

Most published randomized controlled trials investigating
treatment efficacy in dyslexia are seriously underpowered un-
der plausible assumptions. Reviewing the 22 published ran-
domized controlled trials in the meta-analysis by Galuschka
et al. (2014), we found 32 and 20 as the mean and median
number of participants per group, respectively. However, as-
suming a real effect size of d = 0.27 (i.e., the unweighted
average effect size across all treatment approaches calculated
from Galuschka et al., 2014), a pretest—posttest correlation
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between reading scores of 7 = .80 (which may reasonably
reflect the reliability of a reading measure used within a spe-
cial population, see below), setting a conventional critical o« =
.05, and running the ANCOVA as suggested in the previous
paragraph, then about 79 participants per group (i.e., mini-
mum sample size of 158) are needed to reach a statistical
power of 80% and to limit the exaggeration ratio to about
1.10. This and the following calculations were obtained via
simulation using the R software (R Core Team, 2020), with
10,000 iterations. Further details on our simulations will be
provided below in Study 2. The R code has been made pub-
licly available (see the Open Practice Statement section).

With only 20 participants per group (i.e., the median
number of participants per group in the studies reviewed by
Galuschka et al., 2014), the power is only 28%, and the exag-
geration ratio is 1.83. This means that under the assumptions
outlined above, an effect size—calculated with the formula
suggested by Morris (2008)—associated with statistical sig-
nificance would be on average nearly twice as large as the true
effect size. Using methods less powerful than linear models/
ANCOVA with pre-treatment scores as covariate may lead to
even larger overestimations of effects. For example, simply
comparing post-treatment scores using ANOVA/f test (and
ignoring pre-treatment scores) leads to much worse results,
with only 13% power and an exaggeration ratio of 3.01. In
brief, randomized controlled trials in this field not only are
unlikely to reach statistical significance (even if the treatment
is effective), but are also at risk of overestimating effect sizes.

Despite their lack of statistical power, most published stud-
ies with dyslexic participants claim that their treatments are
effective. We reviewed the 22 randomized controlled trials
included in Galuschka et al.’s (2014) meta-analysis. In their
titles or abstracts, 17 studies claimed improved reading fol-
lowing the remediation program, four studies stated that re-
sults were inconsistent or that improvements occurred in cog-
nitive aspects related to but different from reading, and one
study concluded that the results failed to demonstrate any
treatment-related improvement. This “optimism” is particular-
ly worrisome considering the low statistical power of most of
these studies.

One of the reasons behind the above confidence may be the
liberal use of uncorrected multiple testing. We reviewed the
22 studies included in the meta-analysis by Galuschka et al.
(2014), and we found that they tested four different outcomes
of reading on average (median = 3). To quantify treatment
efficacy, Galuschka et al. (2014) appropriately combined all
reading outcomes within the same “group comparison” in
each study (e.g., in a study with a treated vs a control group,
all reading outcomes were combined into a single effect).
Conversely, virtually all studies analysed reading outcomes
separately. In these studies, the presence of an isolated signif-
icant comparison in one reading outcome, at one post-
treatment time point, was typically used to support a claim
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about the efficacy of a specific treatment, even in the presence
of statistically non-significant findings regarding other out-
comes. This does not necessarily mean that most results are
false positives, but that most claims may be supported by
overestimated effects.

Reliability is crucial, and repeated measurements can
be the key to increase power

Collecting several reading outcomes raises the problem of
correcting p values for multiple comparisons if the outcomes
are analysed separately. However, combining effects from
multiple measurements can be a key to obtain more precise
estimates, and thus to increase power to some extent. In meta-
analyses, effect sizes are combined across studies, providing
more precise estimates than possible in single studies.
Similarly, effects calculated from multiple outcomes could
be combined even within a single study, providing more pre-
cise estimates than possible from a single measurement.

An additional way to increase precision is using highly
reliable measures. The formulae by Morris (Morris, 2008)
show how higher pretest—posttest correlation (p, a proxy of a
measure stability/reliability) reduces the effect size variance.
Unsurprisingly, higher pretest—posttest correlation increases
power for ANCOVA on post-treatment scores (covarying by
pre-treatment scores, as recommended by Van Breukelen,
2006, for pretest—posttest-controlled studies), or for any other
analysis in which pre-treatment scores are included, such as
testing the group x time interaction. This will be shown in
Study 2 via simulation. In brief, stronger pretest—posttest cor-
relation means smaller measurement error, thus more precise
estimates of the effect and powerful statistical tests.

The test-retest correlation is generally very high for read-
ing measures, but how can it be determined precisely? One
may consider the test—retest correlation calculated in the nor-
mative population if a standardized test battery is used.
However, this correlation may differ when calculated in spe-
cial populations such as dyslexics. Specifically, the test-retest
correlation of reading scores in dyslexia may be smaller than
that of the normative population because of the shrinkage of
the reading score range (dyslexic participant performs at the
lower tail of the distribution). That a correlation decreases as
the range of one variable reduces can be easily shown via
simulation. For example, we can simulate two correlated sets
of scores with = .95 test—retest reliability from a hypothetical
population. Simulating selecting a dyslexic subgroup we can
then select the cases whose average scores are one standard
deviation (SD) below the population mean. In this subgroup,
the test-retest correlation drops to » =.77. Unsurprisingly, two
recent randomized controlled trials, reviewed in Study 1, re-
ported the test-—retest correlation (Wang, 2017; Wang, Liu, &
Xu, 2019), and specified that this measure was .94 according
to the test battery, but only .81 and .78, respectively, when

calculated in their own samples of children with dyslexia. In
addition, Cirino et al. (2002) reported that the test—retest cor-
relation among standard scores from major reading batteries
ranged between .46 and .92, with a median of about .70, in a
sample of 78 children with reading disability. This is below
the reliability levels generally reported by standardized batte-
ries (for example, 13 out of 40 studies that we reviewed in our
meta-analysis in Study 1 reported test—retest correlations from
the normative samples of the standardized batteries that they
used, and the range of values was from .71 to .96).

Whatever the pretest—posttest correlation, statistical power
can be enhanced by adding more information from repeated
measurements. This could be done by assessing reading per-
formance not once, but several times at pretest and several
times at posttest. Dyslexia (and learning disorders in general)
represents an ideal case because the ability of interest can be
assessed using relatively simple tasks. In research, reading is
generally assessed using word lists and non-word lists, mea-
suring speed/time and/or accuracy. For such reading tasks,
several parallel versions could be easily created ad hoc and
administered. Parameters such as word frequency, length, and
orthographic complexity are relatively easy to control, and
should be equated across parallel versions. In addition, since
reading tasks are similar to everyday life reading requests, it
can be assumed that any practice effect induced by the repeat-
ed measurements remains negligible.

The idea investigated in this paper is to exploit the advan-
tage of single-case experimental designs, where repeated mea-
surements are used to estimate with precision the individual
baseline (and change) of a measure (e.g., Krasny-Pacini &
Evans, 2018), while at the same time keeping the focus on
the population-level effect. In our Study 2, we hypothesized a
scenario in which reading performance is repeatedly assessed
at pre-treatment and at post-treatment for all children, showing
how it leads to superior power as compared to the traditional
design with any reading outcome measured once at pre-
treatment and once at post-treatment.

Aims of the present investigation

The present article includes two studies. Study 1 is a system-
atic review and meta-analysis that updates and extends the
investigation by Galuschka et al. (2014) to provide a picture
of the latest developments in this field. Results by Galuschka
et al. (2014) were formalized and used as a set of Bayesian
informed priors in our own analysis. In recent years, with
several new treatments for children with reading problems,
the number of published studies has grown considerably. In
addition, in recent years several journals have improved their
statistical standards and practices to some extent (Giofre,
Cumming, Fresc, Boedker, & Tressoldi, 2017). Study 2 is
based on the results of our meta-analysis and examines how
statistical power can be improved when studying treatment
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efficacy in dyslexia. We provide examples of different a priori
design analyses conducted via ad hoc simulation, showing
how power varies with sample size, test—retest correlation,
and the study design. We show the advantage of a design
based on collecting and combining several outcome measure-
ments at any single time point at both pre-treatment and post-
treatment over the traditional study design collecting a single
measure per outcome at each time point. (Note that according
to our suggestion, multiple closely spaced successive mea-
surements would need to be taken at each spaced-out fol-
low-up measurement point.)

Study 1: A systematic review
and meta-analysis of the recent findings

We conducted a systematic review and meta-analysis of stud-
ies assessing treatment efficacy published in the past eight
years (January 2013 through June 2020). This time span was
chosen to update the work of Galuschka et al. (2014) that
included studies published until 2013. Our search and inclu-
sion criteria were very similar to those of Galuschka et al.
(2014). However, we identified more studies in our quantita-
tive synthesis than did Galuschka et al. (2014), suggesting
that there was a surge of interest in this field in the past
few years. It should be noted that new treatment ap-
proaches emerged in these recent studies as compared
to those reviewed by Galuschka et al. (2014), including
methodologies inspired by new neuropsychological per-
spectives. Our primary aim was to provide an overview
of the recently published literature with a focus on
methodological and statistical practices.

Method
Literature search and inclusion criteria

Articles published from 2013 through June 2020 were
reviewed. The searched databases were APA Psyclnfo,
Scopus, and PubMed, as they were expected to include
virtually all relevant literature. No further search of the grey
literature was conducted, as we crucially aimed to review the
characteristics of the published literature. The search keys
used by Galuschka et al. (2014) in their search seemed appro-
priate, thus we used the same: (“dyslexia” OR “developmental
reading disorder” OR “developmental dyslexia” OR “devel-
opmental reading disability” OR “reading disorder” OR
“word blindness” OR “spelling disorder” OR “developmental
spelling disorder” OR “specific spelling disorder”) AND
(“treatment” OR “therapy” OR “therapeutics” OR “training”
OR “remediation”); that is, at least one term in the first bracket
combined with at least one term in the second bracket. The
above terms were searched in title, abstract, and keywords.
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We considered any study reporting quantitative data
concerning treatment efficacy on individuals with dyslexia/
reading disorder. The following criteria had to be met for
inclusion: (a) the treatment approach can be of any type, but
it must aim to improve reading performance as its ultimate
goal; (b) the manuscript must be written in English or any
other language understood by one of the authors (including
Spanish, French, Italian, Portuguese, and Hungarian); (c) par-
ticipants must either be clinically diagnosed with develop-
mental dyslexia (or reading disability or reading disorder) or
having a profile compatible with a reading disorder as report-
ed by the authors; in the latter case, participants must have
reading performance either below the 25th percentile or one
standard deviation below the population mean as assessed
using standardized tests in their mother tongue; (d) partici-
pants must be described as having normal intelligence or an
IQ not below 70 (if reported); (e) any comorbidity or co-
occurring condition is acceptable, but they must be compatible
with dyslexia status (e.g., deafness, neurological conditions,
intellectual disability in one or more participants, or low so-
cioeconomic status as a predominant condition of the entire
sample, are exclusion criteria); (f) the study must include at
least one control group comprising individuals with dyslexia,
who must either be untreated, waiting list, or active control
(e.g., a placebo condition; no comparisons between
alternative/competing treatments were considered); (g) group
allocation must be randomized; however, studies which did
not explicitly mention whether the allocation was randomized
were still included and labelled as “unclear”; the analyses
were later performed both with and without these studies;
(h) participants’ reading ability must be assessed at least twice,
including before (pre-test score) and after treatment (post-test
score).

The PRISMA flow diagram summarizing the literature
search and the selection process is reported in Fig. 1. The
full-text eligibility assessment was conducted by two indepen-
dent reviewers. The inter-judge agreement was good, Cohen’s
k = .77. Disagreements were resolved via discussion with a
third reviewer.

Coding of the studies

Two authors coded all studies and double-checked the entries.
A different author further checked the final dataset. For each
study, basic information including title, authors and year of
publication were coded. The dataset included as many rows as
effect sizes. An effect size was defined as standardized mean
difference between reading scores in a treatment vs control
group at the post-test (or follow-up), controlling for the pre-
test scores. Effect sizes concerning follow-up assessments
were coded if available but analysed separately. For most
studies, more than one effect size could be calculated (e.g.,
because more than one reading outcome was used, or because
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Fig. 1 PRISMA flowchart

there were multiple treated groups or control groups).
Therefore, the dataset could include several observations per
study.

For the calculation of the effect size, descriptive statistics of
the reading scores (i.e., mean, standard deviation, and number
of participants on which they were calculated) were coded for
both treated and control group, at both pre- and post-test (or
follow-up). Descriptive statistics were coded from tables or
text where possible, or derived and approximated figures.
Where no descriptive statistics were reported, we coded any
alternative detail that allowed us to estimate the effect size and
its variance (e.g., standardized model coefficients, effect sizes
reported by the authors). If no such details were available, the
authors were directly contacted.

In addition to the effect sizes, a series of sample and meth-
odological details were coded. Sample details included the
mean age of participants or age range, gender distribution,
and mean IQ (where reported). Methodological details includ-
ed type of reading outcome (characters [for Chinese partici-
pants], words, pseudowords, or text reading, lexical decision),
treatment approach, duration of the intervention in weeks,
duration of each session in minutes, and total number of

c
2 Records identified through
_g database searching [PsycInfo = 443;
f‘é PubMed = 347; Scopus = 817]
g (n=1,607)
v Records excluded after de-
duplication
N \ (n=573)
Records after duplicates removed
(n=1,031)
a0
=
=
o}
2
A
Record d (abstract + titl
ecords screened (abstract + title) Repords excluded {n = 89}
(n=1,031)
m Full-text articles excluded (n = 162)
No control group (n = 54)
- Participants did not have
= dyslexia-like characteristics (n =
3 Full-texts articles assessed for 4;
@ eligibility )
w -
(n=202) Not about treatment (n = 15)
No reading outcomes (n = 11)
v Clearly not randomized (n = 6)
(_\ Could not obtain data (n = 6)
Language (n =5)
- o . o Other (n =23)
3 Studies included in the quantitative
% synthesis (meta-analysis)
= (n = 40)

sessions. The “subgroup comparison within study” was also
coded. This is an identifier of the treated-vs-control group
comparison. It served to distinguish among partially indepen-
dent effects within the same study when more than one treated
group or more than one control group were reported.
Treatment approaches were coded following the categories
used by Galuschka et al. (2014), who followed the National
Institute of Child Health and Human Development (2000)
review, where possible. These include phonemic awareness
instruction, phonics instruction, reading fluency training,
reading comprehension training, auditory training, medical
treatment, and coloured overlays. In our review, however,
new approaches were introduced. These included: brain stim-
ulation treatment (e.g., using transcranial direct current stim-
ulation [tDCS] to stimulate reading-related brain areas); action
video game trainings; visual/visual-attentional trainings with a
neuropsychological approach; working memory training;
modelling (a Bandura-inspired approach); reading accelera-
tion program (a training aiming to improve eye movements,
which is particularly used in non-alphabetic languages);
vergence training; multisensory stimulation approaches; and
mixed approaches (i.e., treatments that combine elements
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from several other approaches). Concerning statistical analy-
ses, we coded how treatment efficacy on reading measures
was tested, whether any correction for multiple comparisons
was adopted, and whether power analysis was mentioned as
the rationale for sample size. Two reviewers independently
coded these aspects and subsequently resolved discrepancies
through discussion.

Analytic strategy

The analytic strategy followed the recommendations by
Borenstein, Hedges, Higgins, & Rothstein (2009). The R soft-
ware (R Core Team, 2020) was used to perform all analyses.
All plots were drawn with the “ggplot2” package (Wickham,
2016) of R. Meta-analytic estimates and meta-regressions
were computed using random-effects models. A random-
effects modelling approach was chosen because it allows us
to better account for the expectably large heterogeneity in the
effect size across studies (Borenstein et al., 2009). This ap-
proach assumes that the effect sizes are sampled from a nor-
mally distributed population of effects sizes, rather than all
reflecting the same true effect size. To determine the hetero-
geneity across studies, we looked at the estimated standard
deviation among the true effects across studies (known as T;
Borenstein et al., 2009).

Where the descriptive statistics were available, the effect
size and its variance were calculated using the formula
recommended by Morris (2008) for the “pretest—posttest-con-
trol group” designs. This consists of the mean post-test vs pre-
test gain in the treatment group minus the post-test vs pre-test
gain in the control group, divided by the pooled pre-test stan-
dard deviation. Where the descriptive statistics were not avail-
able (5% of the effects in our dataset), we used the effect sizes
as reported by the authors (provided that they represented the
difference in pre-post gain in the treated group minus the
control group), but its variance was still calculated using the
Morris (2008) formula. As the pretest—posttest correlation (p)
was never reported, we assumed it to be .80 for the calculation
of the effect variance. Any alternative value between .50 and
.90 affected negligibly the point estimates, but they obviously
affected the estimated precision of the effects, and thus het-
erogeneity (which was estimated higher for higher p). Effect
sizes obtained from scores expressing performance negatively
(e.g., reading times, errors) were sign-inverted for
consistency.

Most studies reported more than one effect, and in many
cases also more than one group comparison within study (i.e.,
comparison between a treated-vs-control pair of groups).
These dependencies imply that effect sizes within the same
study and within the same comparison within study provide
partially redundant information, which must be accounted for.
Therefore, we adopted a multilevel modelling approach, as
implemented in the “brms” package of R (Biirkner, 2017).

@ Springer

In our case, the multilevel structure was: Study > Group com-
parison within study > Effect size. In addition, but only to
present the forest and funnel plot of the effects, and for sim-
plicity in assessing the publication bias (see below), we com-
bined the effect sizes within the same group comparison using
the formulas for non-independent outcomes suggested by
Borenstein et al. (2009; pp. 227-228). To compute the vari-
ance for a combined effect, the between-effect correlation was
assumed to be = .70. A sensitivity analysis showed that any
alternative correlation between .30 and .90 had negligible ef-
fects on the point estimates.

Concerning moderators, we tested the age of participants
(categorized as children [mean age below 18 years] or adults
[mean age above 18 years]) and treatment intensity (in terms
of total number of sessions and duration of treatment in
weeks). They were tested via meta-regressions. Treatment ap-
proach, on the contrary, was not tested as a moderator, be-
cause there were very few studies for each single approach.

Bayesian estimation and definition of prior knowledge

A Bayesian approach to data analysis was adopted. We chose
it because it enabled us to formalize and include prior infor-
mation from the meta-analysis by Galuschka et al. (2014). For
a full account of the advantages of a Bayesian approach, see
Kruschke and Liddell (2018) and McElreath (2016). All meta-
analytic models were fitted using the “brms” package of R
(Biirkner, 2017), which uses the Markov chain Monte Carlo
(MCMC) Bayesian estimation method implemented in the
STAN programming language (Stan Development Team,
2018). All models presented below were run with four
MCMC chains each with 5000 iterations, for a total of
10,000 post-burning effective iterations in each model. For
any purpose of model comparison and statistical inference,
the widely applicable information criterion (WAIC;
Watanabe, 2010) was used (smaller values of WAIC
indicate a better fitting model; McElreath, 2016). In examin-
ing any model coefficient, the mean value of its posterior
distribution was taken as the point estimate, while its 95%
Bayesian credible interval (BCI) was computed with the per-
centile method.

We defined prior knowledge from Galuschka et al. (2014).
Prior distributions were defined only for the analysis
concerning the pretest—posttest comparison, for the following
parameters: the overall mean effect size, the heterogeneity
across studies and across group comparisons within study,
and for the estimated mean effect size of the specific treatment
approaches that were considered both in our meta-analysis
and in Galuschka et al. (2014). A “prior” indicates the proba-
bility distribution of an unknown parameter of interest (e.g.,
an effect size), before computing any analysis on the new data
at hand.
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To define the prior distributions for the overall mean effect
size and its heterogeneity across studies, we reran a meta-
analytic model including all 22 studies reviewed by
Galuschka et al. (2014). For brevity, we have reported all
details on the prior definition in the Supplemental material,
Part 1. Here we report the prior distribution only for the mean
effect size. It was set as Student’s ¢ distributions with three
degrees of freedom (a standard of the “brms” package of R)
with M = .30, SD = .06. The central prior value for the T
coefficient of heterogeneity was .08, both at the study level
and at the “group comparison within study” level (see details
in Supplemental material, Part 1). Uninformed default priors
were used for the moderators in the meta-regressions.

Assessment of publication bias

We used the precision-effect test and precision-effect estimate
with standard errors (PET-PEESE), because it represents a
less bad option among other conventional meta-analytic ap-
proaches (Stanley, 2017). However, assessing the publication
bias with a limited number of studies, nearly all of them pre-
senting small samples, and with predictably high heterogene-
ity, is difficult and any result must be taken with caution.

The PET-PEESE method consists of two conditional meta-
regressions in which the standard error (PET) or variance
(PEESE) are entered as moderators of the effect size. The
regression coefficient is interpreted for evidence of the bias,
whereas the model intercept can be interpreted as the bias-
adjusted effect size estimate. The PET method is used first.
It assumes a constant publication bias at all levels of precision,
which is correct if the true effect is null. If the estimated effect
size remains significant, however, the PEESE method is rec-
ommended, which assumes larger publication bias for less
precise studies by using a quadratic model (Stanley, 2017).

To avoid the further complication of multi-level modelling,
the PET-PEESE meta-regressions were applied on the effect
sizes combined by group comparison within study, and these
were treated as independent. The formula for non-independent
outcome suggested by Borenstein et al. (2009) was used to
combine the effect sizes (see above in the Analytic Strategy
section). Therefore, the PET-PEESE method was applied to
the data shown in the forest (Fig. 2) and funnel (Fig. 3) plots.
Furthermore, uninformed default priors were used for all mod-
el parameters when assessing the publication bias.

Results

Overview and characteristics of the studies

A total of 40 studies met the criteria for being included in the
quantitative analysis. Assignment of participants was explic-

itly randomized in 35 studies, and unclear in the remaining
five studies. Thirty-one studies included one group

comparison, and nine included two group comparisons. The
latter subset included six studies presenting two treated groups
compared against the same control group, and three studies
presenting two treated groups each compared against a differ-
ent, matched control group. All studies presented a pretest—
posttest comparison; seven studies also reported a follow-up.
Concerning the pretest—posttest comparisons, a total of 190
effect sizes were estimated. This meant an average of 4.8
outcomes per study and an average of 3.9 outcomes per group
comparison within study.

An estimated total of 1862 participants were involved
across the 40 studies, including 1103 treated and 759 control
participants. The total number of groups was 90, including 49
treated and 43 control groups. The median and mean number
of participants per group was 15 and 20.2 (treatment group:
median = 15, mean = 22.5; control group: median = 15, mean
=17.7).

The estimated grand mean of the age of participants was
11.5 years (the range of estimated mean age of samples was
7.7-25.9 years). Thirty-six studies had participants in the de-
velopmental age (mean age between 7 and 14 years), and four
studies had young adult participants (mean age between 22
and 26 years).

The median treatment session duration was 35 minutes,
ranging between 15 and 450 minutes (including two studies
with self-paced sessions). The median number of sessions per
treatment was 18, ranging between 2 and 225 sessions. The
median treatment duration was of 5 weeks, ranging between 1
and 30 weeks.

Meta-analytic estimates

The following analyses refer only to the pretest—posttest com-
parisons, except where indicated otherwise.

The overall meta-analytic estimate of the effect size, com-
puted with multilevel modelling on 40 studies and a total of 49
group comparisons within study, was a medium standardized
difference of d = 0.38 [95% BCI: 0.31, 0.46]. The estimated
heterogeneity was substantial: across studies, 7= 0.12 [0.02,
0.24]; across group comparisons within study, 7=0.17 [0.06,
0.27]. This means that, while the average effect size is esti-
mated as 0.38, the true effect sizes across studies are estimated
to range mostly between 0.14 and 0.62. The mean meta-
analytic estimate obtained after excluding the five studies for
which randomization was unclear remained virtually the
same, d = 0.35[0.28, 0.42].

The descriptive forest plot is shown in Fig. 2. A funnel plot
is shown in Fig. 3.

The following treatment approaches were used in at least
three different studies: phonemic awareness instruction, pho-
nics instruction, mixed, brain stimulation, visual-attentional/
neuropsychological, action video games, reading acceleration
program, and working memory. Meta-analytic estimates
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Study - Comparison within study

Estimate [95% CI]

Bar-Kochva gi201€g - Morpheme training vs Control 1 0.35[0.08, 0.62]
Bedoin (2017) - SWITCHIPIDO vs Control —eo— 0.36 [-0.06, 0.77
Bonacina et al. (2015) - RRT vs control —e— 0.24 [-0.07, 0.55
Christodoulou et al. (2017) - Seeing Stars vs Control e 0.56 [ 0.30, 0.83
Costanzo et al. (2016) - tDCS vs Sham —e—— 0.45[0.04, 0.86
Costanzo et al. (2019) - tDCS vs Sham —e— 0.40[0.03,0.76
Dai et al. (2016) - Character-acceleration vs Control —eo— 0.73[0.37, 1.09
Dai et al. (2016) - Words-acceleration vs Control i—‘—| 0.36[0.01,0.70
Decker and Buggey (2014) - Peer-modeling vs Control \g | 0.45[-0.79, 1.68
Decker and Bu de 82014 - Self-modeling vs Control I 0 - | 1.65[-0.41, 3.71
Ebrahimi et al.? 019) - Magnocellular training vs Control | —— 0.53[0.08, 0.98]
Ferraz et al. (2018) - Phonological reading program vs Control —e— 0.42[0.04, 0.80]
Flaugnacco et al. (2015) - Music vs Control —e— -0.04 [-0.32, 0.23
Franceschini, et al. (2013) - Action videog.vs Non-action videog. —e— -0.04 [-0.42, 0.34
Franceschini, Trevisan, et al. (2017) - Action videog.vs Non-action videog. f—eo— 0.31[-0.04, 0.66
Franceschini, Bertoni, et al. (2017) - Action videog.vs Non-action videog. ——— 0.22[-0.34,0.79
Frijters et al. (2013) - PHAST vs Control . e 0.45[0.29, 0.60]
Gonzalez et al. (2015) - Training program vs Waiting list N e 0.59[0.33, 0.86]
Gorgen et al. (2020) - Game based vs Controls Grade 2 F—eo— 0.19[-0.18, 0.56]
Gorgen et al. (2020) - Game based vs Controls Grade 3 —eo— 0.07 [-0.27, 0.41]
Gori et al. (2016) - Magnocellular-dorsal training vs Control : —e— 1.42[0.58, 2.26]
Heth and Lavidor (2015) - tDCS vs Sham ——— 0.25[-0.33, 0.84]
Horowitz-Kraus, Vannest, et al. (2014) - RAN vs control i —eo— 0.99[0.64, 1.35]
Horowitz-Kraus, Cicchino, et al. (2014) - RAP vs Waiting list English i—e— 0.36 [ 0.06, 0.66]
Horowitz-Kraus, Cicchino, et al. (2014) - RAP vs Waiting list Hebrew ! —o— 0.82[0.56, 1.08]
Kashani-Vahid et al. 2019? - Videogames vs Control —e— 0.440.04, 0.83]
Koen et al. (2018) - Visual Hemisphere Stimulation vs Control I—:0—| 0.10[-0.57, 0.77}
Layes, Lalonde, et al. (2019) - Phonological awareness training vs Control \ —eo— 1.28[0.90, 1.66
Layes, Chouchani, et al. (2019) - Visuomotor-based intervention vs Control | —— 0.64[0.13, 1.15]]
Lotfi et al. (2020) - Computerized cognitive training vs Control —o— 0.00[-0.47, 0.47
tuniewska et al. (2018) - Action video games vs Non-action videogames —o— 0.03[-0.25, 0.31
Luo et al. (2013) - Working memory training vs Control r e 0.79[0.37,1.20
Meng et al. (2014) - Visual texture training vs Control i P—e— 1.91[0.98, 2.85
Nukari et al. (2020) - Group intervention vs Waiting list —— 0.33[0.04, 0.62
Nukari et al. (2020) - Individual intervention vs Waiting list 0.28[0.00, 0.57
Ramsay et al. (2014) - Group intervention vs Control ———— 0.18 [-0.40, 0.76
Shaywitz et al. (2017) - Pharmacological treatment vs Placebo I—0—| 0.24[-0.01, 0.49
Toste et al. (2019) - Multisyllabic reading vs Control R | 0.57[0.35,0.79
Toste et al. (2019) - Multisyllabic reading+Motivation vs Control [ 0.54[0.33,0.75
Wang (2017) - Phonological training vs Control 1 0.46[0.12,0.81
Wang et al. (2019) - Auditory training vs Control H—e— 0.28 [-0.10, 0.65
Wang et al. (2019) - Visual training vs Control e S 0.71[0.31, 1.10
Werth (2019) - Compensatory training vs Control i —e— 1.17[0.69, 1.65
Wolff (2014) - Phonemic awareness vs Control ! 0.28[0.09, 0.48
Wolff (2016) - Mixed training vs Control " e 0.36[0.18, 0.54
Yang et al. (2017) - Verbal WM intervention vs Control H—e— 0.29[-0.12, 0.70
Yang et al. (2017) - Visuospatial WM intervention vs Control H—e— 0.35[-0.11, 0.81
Zhao et al. (2019) - VAS training vs Controls VAS-impaired —— 0.21[-0.17, 0.60
Zhao et al. (2019) - VAS training vs Controls VAS-nonimp. |—+—i 0.00[-0.37, 0.38
1
-1 0 1 2 3 4

Estimated Effect Size (Standardized Difference)

Fig.2 Descriptive forest plot of the effect sizes combined by group comparison within study. Note. Effect sizes within the same group comparison were
combined assuming a between-effect correlation of 7 = .70 (alternative » values do not affect point estimates but affect their Cls)

calculated separately by these treatment approaches can be
found in Supplemental material, Part 2. These estimates vary
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Fig. 3 Funnel plot of the effect sizes combined by comparison within
study
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between .20 and .61; however, given the large heterogeneity
of the effects, the very limited number of studies for each
approach, and the resulting large BClIs, such estimates must
be taken with caution. Each of the following remaining ap-
proaches was used in less than three studies: medical treat-
ment, modelling, music training, reading fluency training,
vergence.

There was no evidence in favour of the age class of the
sample moderating the treatment efficacy, as shown in a mul-
tilevel meta-regression, AWAIC = +0.6. The estimated treat-
ment efficacies confirmed that the effect was negligible: for
children, d = 0.37 [0.30, 0.46]; for adults, d = 0.40 [0.13,
0.68]. There was no evidence in favour of a role of number
of sessions, AWAIC = +0.8, |B| < 0.001, or a role of duration
of treatment in weeks, AWAIC =-0.2, B =—0.004, as moder-
ators of the treatment efficacy.

Finally, we analysed the pre-test vs follow-up comparisons
which could be estimated from seven studies. Since all but one
of these studies included only one group comparison, we en-
tered only studies as the random effect. Uninformed default
priors were used for all model parameters in this case. The
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meta-analytic estimate was d = 0.38 [0.23, 0.61]. Curiously,
this is the same estimate as for the pretest—posttest comparison
(but with larger uncertainty). The heterogeneity across studies
was again large, 7= 0.14 [0.00, 0.46].

Publication bias

The PET-PEESE method suggested that there was publication
bias. Concerning the overall effect size for the pretest—posttest
comparisons, the PET model (including standard errors as a
moderator of the effect size) fitted clearly better than the null
model, AWAIC = —2.9; the moderator coefficient was B =
1.14 [0.03, 2.28]. The bias-adjusted estimated effect size
was d = 0.22 [-0.01, 0.44]. As the 95% BCI included zero,
this could be considered analogous to a “non-significant” es-
timate, and the PEESE model would conventionally be omit-
ted. However, the interval of uncertainty for the bias-adjusted
estimate is clearly not around zero, thus we do not believe that
the null hypothesis can be accepted. Therefore, we still
proceeded to fit the PEESE model. The latter had a better fit
than the null model as well, AWAIC = —2.6 (moderator coef-
ficient: B = 1.59 [0.08, 3.11]), but not better than the PET
model, AWAIC = +0.3. The bias-adjusted effect size estimat-
ed by the PEESE model was d = 0.36 [0.26, 0.47], only slight-
ly lower than the estimate from the null model, d = 0.42 [0.34,
0.51] (the latter estimate is larger than that presented in the
previous section, but note that uninformed default priors were
used here). In conclusion, evidence of a publication bias
emerged, perhaps as large as to make it unclear whether the
average true effect is non-null, but its precise extent remains
uncertain.

Since the number of studies that included pretest—follow-
up comparisons was very small, publication bias was not ex-
amined for this effect.

Details on analytical approaches

Most of the studies (i.e., 17 out of 40) assessed the treatment
efficacy on reading outcomes via an ANOVA testing the
group x time interaction, including three studies that also co-
varied for pre-treatment scores. ANOVA/linear models on
post-treatment scores covarying pre-treatment scores were
used by another seven studies. Analyses on pretest—posttest
gains were conducted in only two studies. The remaining
studies used a mix of methods, mostly including ANOVA/
pairwise ¢ tests/non-parametric tests to compare pretest—
posttest scores differently by group or treated—control scores
differently by time.

Nearly all studies used p value as the inferential criterion.
Most of the studies (i.e., 33 out of 40) assessed multiple read-
ing outcomes. Only 10 studies, however, adopted p value
corrections (mostly using Bonferroni). Out of these, seven
corrected for pairwise post hoc comparisons, and only three

corrected for all comparisons (i.e., also for testing of multiple
ANOVAs). Finally, out of the 33 studies that tested multiple
reading outcomes, only two used multivariate ANOVA
(MANOVA) to handle such multiplicity.

Considerations of statistical power and comparison
with Galuschka et al. (2014)

It is apparent that the average number of participants per group
has dropped over time. From the meta-analysis by Galuschka
et al. (2014) to our present review, the median has dropped
from 20 to 15, and mean has dropped from 32 to 20. This
suggests that the previous meta-analysis failed to inform sub-
sequent studies in terms of planning for adequate power. In
fact, out of 40 studies that we reviewed, only three
(Flaugnacco et al., 2015; Gonzalez et al., 2015; Luniewska,
Chyl, Debska, Kacprzak, & Plewko, 2018) mentioned and
calculated power to justify their sample size. The three studies
aimed to reach power levels between 80% and 99%, but all
three seemed optimistic in their expectations. Specifically, one
assumed a net (i.e., treatment minus control) effect size equiv-
alent to d = 0.77 (without referring to the previous literature),
one assumed an unspecified “medium to large effect size”,
and another referred to previously reported effect sizes of me-
dium magnitude (but it acknowledged that its sample size
would be insufficient to detect a small effect).

Overall, statistical power was clearly insufficient in most
studies. Based on our meta-analytic estimate of d = 0.38, as-
suming a pretest—posttest correlation of .80, testing statistical
significance using ANCOVA covarying pre-treatment scores
(Van Breukelen, 2006) and calculating the effect size as sug-
gested by Morris (2008), the median study reviewed here (15
participants per group) had a power of 37%, with an exagger-
ation ratio of 1.58. Under these assumptions, a power of 80%
would be exceeded with at least 43 participants per group
(minimum sample size of 86). Unfortunately, only 5 out of
40 studies reviewed here had such a sample size or larger.

Study 2: How to move on - simulating design
analysis and using repeated measurements

In Study 2 we conducted design analysis via simulation to
examine how power (and the risk of overestimation) vary with
measure reliability, use of repeated instead of one-off mea-
surements, and inferential criterion (p value vs Bayes factor)
when assessing treatment efficacy in dyslexia. As stressed in
the Introduction, collecting repeated measurements at pre- and
post-treatment may crucially increase reliability and thus pow-
er. Specifically, multiple measurements allow us to estimate
both individual baseline and pretest—posttest variation with
precision. This principle is illustrated in Fig. 4. Therefore,
we conducted simulated design analysis also hypothesizing

@ Springer
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Fig.4 Illustration of the data that may emerge a from a traditional design measuring the individual reading performance only once at pre-test and at post-
test and b from a design with repeated measurements and estimation with uncertainty of the individual parameters (error bars)

that reading performance would be assessed more than once at
pre-treatment and at post-treatment.

Method

All analyses described below were performed using R soft-
ware and STAN, and the code is publicly available online.

Conducting design analysis via simulation

For simplicity, in our examples we assumed that reading
scores would always be normally distributed (when measured
both across different participants and within the same partic-
ipant). Design analysis for a simple 2 (Group: treated vs con-
trol) x 2 (Time: pretest vs posttest) design, with one reading
outcome measured once per time, requires assuming two most
important parameters: the effect size and the pretest—posttest
correlation. The pretest—posttest correlation was always set by
generating paired arrays of correlated normally distributed
scores for the pretest and posttest observations with the de-
sired Pearson’s r. This correlation could be simulated in alter-
native ways, for example by determining the within- vs
between-participant error variances. Nonetheless, we opted
to directly generate correlated scores because a pretest—
posttest correlation parameter is easier to formalize and to
compare with values from the existing literature (e.g., based
on the reliability scores of the test batteries). As the scores are
sampled from a standard normal distribution, the standardized
effect size was simply added to the post-treatment scores for
the treated (and not for the control) group. However, one
could easily simulate data on their real scale by linearly
transforming all scores, or even generate non-normally distrib-
uted scores (e.g., correlated non-normally distributed scores
can be simulated using the “semTools” package of R,
Jorgensen, Pornprasertmanit, Schoemann, & Rosseel, 2020).

@ Springer

Participants were assigned randomly to the treated or control
group in all subsequent examples.

Response to treatment can be assumed to vary across indi-
viduals. To do so, the effect size can be sampled for each
treated participant instead of being fixed. Assuming a normal
distribution of effect sizes, this can be centred on a meta-
analytic estimate (e.g., around 0.38 in our case), and have a
plausible standard deviation (SD) that indicates how much the
response to treatment may vary across participants. For exam-
ple, sampling from N(0.38, 0.20) means that the large majority
(about 95%) of treated participants would benefit from an
effect that varies between about .00 and nearly .80 across
individuals. This seemed plausible, so we used this distribu-
tion in all examples below. Nonetheless, we found that even
an effect fixed to .38 for all treated participants virtually led to
the same power levels. Simulating a treatment efficacy that
varies across participants may be interesting if one plans to
investigate individual differences in response to treatment,
however, as we will comment in the Discussion section.
Finally, an additional term could be added to the post-
treatment scores of all participants to simulate a practice ef-
fect. Unless the practice effect is assumed to vary across
participants, however, it will be practically negligible for
both statistical power and the effect size calculation. In
addition, practice effect in everyday-like reading tasks
(e.g., reading a list of words) is likely negligible in chil-
dren with dyslexia. Therefore, we did not consider it in
the following examples.

Once a simulated dataset has been generated, the selected
statistical analysis must be performed. In our case, we per-
formed ANCOV A/linear models to test the effect of group
on post-treatment scores, covarying pre-treatment scores (as
suggested by Van Breukelen, 2006, but see also Gelman et al.,
2020). However, one may use any alternative statistical
methods of choice, for example testing group x time interac-
tion, or using Bayesian estimating methods and inferential
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criteria. At this point, p value corrections should be applied to
the simulated results if multiple reading outcomes are collect-
ed (in our simulated examples below, however, we assumed
examining only one outcome). Concerning the estimation of
the effect size, we used the formula suggested by Morris
(2008).

To conduct design analysis, the entire process described so
far must be repeated by several iterations (we opted for 10,000
iterations) for each of a series of alternative sample sizes. At
each iteration, both the inferential criterion (e.g., p value from
the ANCOVA) and the observed effect size (i.e., the ef-
fect size calculated on the simulated data) must be re-
corded. The entire process will end when the sample
size leads to the desired level of power (e.g., more than
80% of iterations ending with p < .05 or with Bayes
factor > 3) and/or to a desired level of the exaggeration
ratio (e.g., the observed effect size associated with sta-
tistical significant being not larger than 10-15% more
than the true effect size on average).

Use of repeated measurements

For the example concerning repeated measurements, we
assumed that a reading outcome would be collected not
once, but three times at pre-treatment and three times at
post-treatment, which seems feasible in an experimental
setting. Due to the structure of the data, ANCOVA/
linear models covarying pre-treatment scores can no
longer be performed in this case, unless scores are av-
eraged by participant and by time (which we discourage
for reasons explained below in the Discussion).
Therefore, we assessed treatment efficacy testing the
group X time interaction, which is still an appropriate
choice (e.g., Dimitrov & Rumrill, 2003). Since repeated
measurements were examined, we used mixed-effects
models, fitted using the “lme4” package in R (Bates,
Maechler, Bolker, & Walker, 2015). We entered group
(treatment vs control) and time (pretest vs posttest) as
the fixed effects of interest, participants as random ef-
fects (with random intercepts), and reading scores (with-
out averaging) as the response variable. Random slopes
were not fitted in this case, because the limited number
of repeated measurements at each time point meant that
they could not be estimated accurately. When we fit
them in a separate simulation, however, the power was
not affected to any visible extent. Nonetheless, fitting
random slopes is recommended for larger numbers of
repeated measurements (e.g., five or more).

The calculation of the empirical effect size in this
case is not trivial. For simplicity, we applied the formu-
la suggested by Morris (2008) despite multiple observa-
tions being collected for each participant at each time
point. Alternatively, one could calculate the effect size

on the data averaged by participant and by time. In the
latter case, however, the observed effect size would
somehow inflate, because averaging reduces the mea-
surement error, thus decreasing the standard deviation.

Using Bayes factor instead of p value

None of the 40 studies that we reviewed in our meta-analysis
used Bayesian methods. However, such methods are becom-
ing increasingly popular in the social sciences. A fully
Bayesian approach should encompass the definition of in-
formed priors, the consideration of posterior distributions,
and the discussion of the phenomenon at hand in probabilistic
terms and in light of the prior expectations (e.g., Kruschke &
Liddell, 2018; McElreath, 2016). Covering the complexity
and the advantages of this approach, however, goes beyond
the scope of the present article. Rather, we aimed to show how
the design analysis for treatment efficacy in dyslexia is affect-
ed using a more simplified inferential procedure based on the
Bayes factor (BF). Specifically, we used the popular
“BayesFactor” package in R (Morey & Rouder, 2018) to fit
Bayesian linear models and calculate the BF, with default
settings.

Using BF as the inferential criterion does not affect the
procedure for the simulation of the design analysis as de-
scribed above, but it opens new inferential scenarios.
Specifically, defining Hy as the null hypothesis (e.g., group
x time interaction is null, or the effect of group on post-
treatment scores is null) and H; as the hypothesis that the
treatment efficacy is non-zero, the BF can either support Hj,
support Hy, or remain indecisive. Popular interpretive thresh-
olds for the BF are the following: BF > 3 supports H1 with
moderate (or stronger) evidence; BF < 1/3 supports Hy with
moderate (or stronger) evidence; BF between 1/3 and 3 leaves
one with inconclusive results or just anecdotal evidence (e.g.,
Raftery, 1995; Schonbrodt & Wagenmakers, 2018).

Results

In a first analysis, we systematically examined how power and
the exaggeration ratio vary with the pretest—posttest correla-
tion (from .60 to .90) at different sample sizes (i.e., number of
participants per group), using the traditional pretest—posttest-
controlled design. We assumed a true effect of d = 0.38, which
is in line with our meta-analytic results, and we used
ANCOVA covarying pre-treatment scores, with a critical «
= .05, for statistical inference. The results are shown in Fig. 5.
As can be seen, higher pretest—posttest correlation of scores
crucially enhances power.

In a second analysis, we focused on the use of repeated
measurements with an outcome collected thrice at each time
point. Again, we assumed an effect size of d = 0.38, and we
varied the correlation between repeated measurements from
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Fig. 5 Design analysis showing a power and b exaggeration ratio for
different numerosity of groups and pretest—posttest correlations for a
treatment with a standardized effect size of d = 0.38, using a traditional
experimental design (i.e., reading is measured once at pre-treatment and
once at post-treatment for each participant). Note. The horizontal dashed

.60 to .90. The latter parameter now describes the correlation
between any pair of reading measures collected on the same
participant (regardless of whether they were collected at pre-
test or posttest). Figure 6 shows the results. As can be seen, the
power has clearly enhanced since the previous example.
Specifically, for » = .80, Fig. 5 suggested that nearly 40 par-
ticipants per group were needed for the power to exceed 80%
(i.e., when only two groups are being compared, the total
sample size needed is about 80), whereas Fig. 6 suggests that
the same level of power could be reached with only about 15—
20 participants per group using repeated measurements and
mixed-effects models under the proposed scenario (i.e., with
two groups, the sample size needed is 3040 participants).
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Fig. 6 Design analysis showing a power and b exaggeration ratio for
different numerosity of groups and different correlations between
repeated measurements, for a treatment with a standardized effect size
ofd =0.38, using a repeated-measurement experimental design with three
distinct measures of reading at pre-treatment and three measures at post-
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In a third analysis, we repeated the design analysis with
both the traditional design and the suggested repeated mea-
surements approach, but now using the BF instead of p value
as the inferential criterion, and fitting models with the
“BayesFactor” package in R. Once again, we set the effect
size d = 0.38, and a repeated measures correlation of r = .80.
As its default setting, a Cauchy distribution with scale =
0.50 was used as the prior for the standardized fixed ef-
fects (meaning that the prior was centred on zero, with
half of its distribution beyond d < —0.50 or d > 0.50).
Since it was unclear how mixed-effects linear models
(and specifically the random effects) would be estimated
using the “BayesFactor” package, we averaged scores by
participant and by time in the case of repeated
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treatment for each participant. Note. The horizontal dashed lines represent
in panel (a) the acceptable level of power = .80, and in panel (b) the
perfect equivalence between estimated and true effect size (exaggeration
ratio = 1.0) and the acceptable level of exaggeration ratio = 1.1
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Fig. 7 Design analysis for testing treatment efficacy using the Bayes
factor (BF). True effect size is set as d = 0.38; correlation between
repeated measurements is set as 7 = .80. Panel A refers to the classical

measurements, and we always used linear models on post-
treatment scores, covarying pre-treatment scores (using
frequentist methods as in the first two examples, we found
that this alternative affected power negligibly).

Figure 7 shows the results of the design analysis
using BF for the traditional design (panel A) and for
the repeated measures design that we proposed, with
three reading measurements at pre-treatment and at
post-treatment (panel B). Power was defined as the
probability of supporting H;, with BF > 3.
Unsurprisingly, Fig. 7 shows that the repeated measure-
ment design was more powerful than the traditional de-
sign. Using the BF, however, did not increase power as
compared to using frequentist methods (Figs. 5 and 6).
This simply suggests that BF > 3 is roughly a stricter
criterion than p < .05. An interpretive advantage of
using the BF may be that, when H; fails to be support-
ed, it is possible to distinguish explicitly the case in
which H; can be rejected from the case in which the
results remain indecisive. In Fig. 7, the “risk” of
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design with a single measurement at pretest and posttest; panel B refers to
an alternative design with three measurements of reading at pre-treatment
and three measurements of reading at post-treatment for each participant

wrongly supporting Hy, when the treatment is actually
effective was around 5% for sample sizes up to 100
(i.e., up to 50 participants per group), but only in the
classical design (panel A). In all other cases, regardless
of the sample size, the predominant interpretive risk is
that of remaining indecisive (BF between 1/3 and 3).

Discussion

The first aim of this paper was to estimate the average effect
size of treatments for dyslexia by performing an updated me-
ta-analysis. The second aim was to provide recommendations
on how to increase power when testing treatment efficacy in
dyslexia, highlighting the importance of conducting a priori
design analyses.

Concerning the first aim, the overall meta-analytic estimate
for the pretest—posttest effect was d = 0.38, with a narrow 95%
CI, which is encouraging. For the pretest—follow-up effect, the
point estimate was the same. This is a larger effect size than
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the meta-analytic estimates of around 0.20-0.30 found by
Galuschka et al. (2014), but it still qualifies as a modest effect.
A notable difference between our results and those of the
previous meta-analysis is the estimated precision of the ef-
fects. Our forest plot (Fig. 2) has error bars nearly 50% shorter,
on average, than those presented by Galuschka et al. (2014),
despite even smaller average sample sizes in our case. This is
due to our calculation of the effect sizes using the formula
proposed by Morris (2008), which incorporates the
(assumed) pretest—posttest correlation in the estimated preci-
sion. As Galuschka et al. (2014) did not incorporate such
information, their Cls are equivalent as assuming zero corre-
lation between pretest and posttest scores that may not be a
realistic assumption. Although this is unlikely to affect the
meta-analytic point estimates of the effect size to a large de-
gree, this clearly affects the estimated standard errors, and
therefore confidence intervals, significance levels, and the es-
timated heterogeneity of the effect size across studies.

The 40 studies that we reviewed had a median participant
number of 15 per group, corresponding to a median sample
size of 30 for any single treatment-vs-control group compari-
son. This number is even smaller than the median across the
22 studies reviewed previously by Galuschka et al. (2014). It
is in line with studies generally published in cognitive psy-
chology and only slightly larger than the average sample size
in neuroimaging studies (Szucs & loannidis, 2017, 2020).
Nonetheless, we showed that with this median sample size,
most studies in this field are seriously underpowered under
any plausible assumptions. Furthermore, the PET-PEESE me-
ta-regression method suggested that publication bias was like-
ly. However, the relatively limited number of studies, the fact
that nearly all of them had small sample sizes, and the sub-
stantial heterogeneity meant that the latter analysis may be
unreliable (much like any other conventional approach of
this kind; Stanley, 2017). The bias-adjusted estimate was de-
flated by nearly 50% (PET method) or less than 10% (PEESE
method) vis-a-vis the non-adjusted estimate.

Despite their average statistical power being low, most
studies that we reviewed in the present meta-analysis claimed
that the proposed treatment was effective. Specifically, when
we examined all titles and abstracts, we found that 33 out of40
studies (83%) claimed that the treatment proposed was an
effective remedy for participants with reading impairments.
This may be because, as shown by our systematic review,
most studies tested several outcomes without correcting p-

values for all multiple comparisons. This practice may result
in many false positive findings even if statistically significant
outcomes are found.

From a theoretical point of view, our review revealed
that a variety of new treatment approaches have been used
in recent years. A prominent one was the
neuropsychologically inspired approach, including visual/
visual-attentional trainings and action video games.
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Specifically, some studies focused on increasing visual-
attentional skills that allegedly underpin reading ability,
such as skills linked with the magnocellular pathway
(e.g., Stein, 2018). Randomized controlled trials focusing
on direct brain stimulation also emerged. Our results, how-
ever, suggested that these novel approaches were not more
effective than the traditional ones on average (see
Supplemental material, Part 2).

Concerning the second aim, we showed that under plausi-
ble assumptions, the sample size required to obtain a power of
80% is about double the median sample size in published
randomized controlled trials. Nonetheless, it could be consid-
erably reduced through a strategic use of repeated measure-
ments. By plausible assumptions we meant a standardized
effect size of d = 0.38, which corresponds to the overall mean
estimate that resulted from our meta-analysis, and a pretest—
posttest correlation of around » = .80. In fact, a more conser-
vative effect size assumption (i.c., between 0.20 and 0.30)
should be preferred by those who plan to assess treatment
efficacy, both for caution if any novel approach is examined,
and because our meta-analysis suggested the presence of a
publication bias in the previous literature. Furthermore, in all
our examples we assumed that only one reading outcome
would be tested, thus without need to correct p value for mul-
tiple tests. Note that any p value correction, by requiring
stricter inferential criteria, would further reduce power and
increase the exaggeration ratio.

Given the importance of the test—retest/pretest—posttest cor-
relation parameters, they should always be considered when
testing treatment efficacy. Concerning the test-retest correla-
tion, the actual reliability of standardized reading measures
may be higher than .80 in normative populations. However,
as explained in the Introduction, there are reasons to think that
this value may not be as high as .80 in children with dyslexia.
Calculating such parameter from one’s own experimental
sample is an option, but since sample sizes are generally small,
any estimate will probably be imprecise. It is worth noting that
the classical test-retest correlation may reflect not only the
stability in measuring the underlying construct of interest
(i.e., reading ability), but also task-specific features.
Considering the correlation among different parallel versions
of a task is better than considering the test—retest correlation
for the same version. An even better approach could be mea-
suring the latent reading ability factor using a variety of dif-
ferent tasks. In this case, structural equation modelling, al-
though typically requiring larger samples, may be the appro-
priate analytical approach. This is a venue for future research.

Concerning experimental design, we showed the ad-
vantage of collecting repeated measurements of individual
reading scores at both pre-treatment and post-treatment
times. This allows us to exploit the advantage of a
single-case experimental design approach, in terms of
having robust estimates of the individual parameters,



Behav Res

while keeping the focus on the population-level effect. It
is well known that increasing the number of observations
might also lead to an increment of the statistical power
and of the precision, even with the same number of par-
ticipants (e.g., Maxwell, Delaney, & Kelley, 2018).
Nonetheless, none of the 40 studies that we reviewed here
adopted the design that we proposed, and only one
(Wolff, 2014) did something similar by combining differ-
ent reading outcomes in a latent factor using structural
equation modelling (which typically requires large sample
sizes, however).

We suggest that repeated measurements should be collect-
ed using different versions of a same task. In fact, while prac-
tice effects for everyday-like reading requests such as those
posed by classical reading tasks (e.g., reading word lists) are
likely negligible for children with dyslexia, we cannot exclude
that it may become an issue when repeatedly presenting the
exact same stimuli. Luckily, creating different versions of
reading tasks is relatively easy because the material generally
consists of simple verbal stimuli (controlled for a few impor-
tant parameters such as word frequency, length, and ortho-
graphic complexity).

Concerning data analysis, we suggest using mixed-effects
models, with participants as random effects, to exploit the
information available with the recommended repeated mea-
sures design. The population-level effect (i.e., the average
pretest—posttest gain) can be examined by considering the
fixed-effects part of the model. However, the random-effects
part can be of interest as well. Examining random slopes
(which we did not do here for simplicity) represents an ideal
approach for precisely estimating how individuals may re-
spond differently to treatment. In fact, previous studies have
suggested that response to treatment in dyslexia likely reflects
individual differences (e.g., Aravena, Tijms, Snellings, & van
der Molen, 2016; Zhao et al., 2019). Accurately investigating
the variability in the random slopes, however, may require
many repeated measurements of a reading outcome per time
point, which is something that can be considered in a simulat-
ed ad hoc design analysis. An easier alternative to mixed-
effects models could be fitting linear models on the scores
averaged by participants and by time. However, this latter
option loses information on intra-individual variability.

Using repeated measurements opens further questions and
areas of investigation. It raises the issue of how reading per-
formance varies intra-individually. How do reading measure-
ments vary over time in the short- and medium-term? For
example, do circadian oscillations affect reading performance,
as they have been shown to affect other cognitive abilities
(e.g., Hahn et al., 2012), especially in children with dyslexia?
The ideal temporal spacing of repeated measurements within
the same time point is a matter for future research.

Concerning the inferential criteria, we briefly examined
how the use of a Bayesian criterion to quantify evidence

may affect the design analysis. Using BF with default param-
eters did not help increasing power as compared to traditional
frequentist methods. It may have the interpretive advantage of
distinguishing between an uncertain outcome and a case in
which Hj is supported by the BF. If the study is adequately
powered for an effect size of interest, however, failing to reject
Hy should imply rejecting H; even using a frequentist ap-
proach. Furthermore, proper design analysis with BF should
be conducted also under a null hypothesis scenario (e.g.,
Schonbrodt & Wagenmakers, 2018), to check whether Hy
would be consistently supported—should it be true—under
the chosen assumptions. In any case, if Bayesian inference is
used, we recommend adopting a fully Bayesian approach,
including an explicit formalization of the priors and the con-
sideration of the posterior probability of the effect size (e.g.,
McElreath, 2016), rather than using a simplified criterion such
as the BF calculated with the default parameters set by the
software.

From a methodological point of view, we recommend
adopting a simulation approach to design analysis. Although
there are tools for the analytical calculation of power for a
variety of statistical methods, simulation allows maximum
flexibility. The latter is crucial because, as discussed, both
power and the exaggeration ratio depend on several aspects,
which may be difficult to control analytically. Via simulation,
one can perform design analysis under several alternative ad
hoc scenarios, for example assuming individual heterogeneity
in response to treatment, varying the correlations among the
outcome variables (or among the predictors in non-
experimental settings), adopting alternative criteria for infer-
ence (e.g., p value vs Bayes factor), and considering not only
power, but also other parameters such as the risk of overesti-
mation (exaggeration ratio; Alto¢ et al., 2020; Gelman &
Carlin, 2014) or the risk of supporting the wrong hypothesis
(especially if Bayesian inference is used).

Finally, although we stressed the importance of a priori
design analysis, we would like to warn the readers about its
limitations. Specifically, our simulation analysis in Study 2
may have suggested that under ideal conditions (i.e., enough
repeated measurements of the outcome at each time point
combined with high measure reliability), high power may be
reached even with very small samples. This may not always
be the case, however. Data collected on small samples could
still be unreliable for unforeseen reasons. First, as mentioned
above, the time spacing between repeated measurements mat-
ters. Repetitions too close in time may lead to an extremely
high correlation between measurements collected within the
same time point (without increasing the correlation between
pre-treatment and post-treatment). In this case, repeated mea-
surements would be redundant, thus failing to enhance preci-
sion. The recommended design is most advantageous when
such correlation is not too high (ideally, when it is as high as
the correlation between pre-treatment and post-treatment
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scores), thus effectively serving to reduce the measurement
error in the individual estimates of the underlying reading
ability. Second, if response to treatment were largely hetero-
geneous across individuals, no result from any small sample
could be generalized to the population, regardless of the pre-
cision of the estimates within the studied sample. For these
reasons, we would not recommend planning to use sample
sizes below 40 (i.e., below 20 participants per group), even
under ideal conditions.

Conclusions

Testing small samples is often unavoidable in studies on
neurodevelopmental disorders, including randomized con-
trolled trials assessing treatment efficacy in learning disorders.
Unfortunately, plausible effect sizes in this field are also small.
This is true not only because the real effect sizes in psychol-
ogy are generally limited (Open Science Collaboration, 2015),
but also because learning disorders are characterized by poor
response to treatment by definition (DSM-5; APA, 2013).
This combination of small samples and small true effects leads
to low statistical power. The latter not only makes it difficult to
distinguish true- from false-positive results (Szucs &
Ioannidis, 2017), but also leads to an increased risk of
overestimating the effect sizes (Gelman & Carlin, 2014), the
so-called winner’s curse effect (Young, loannidis, & Al-
Ubaydli, 2008; see also Button et al., 2013). This means that
low-powered studies risk either reporting effects that are sta-
tistically significant but overestimated or reporting accurate
effect size estimates that fail to reach statistical significance.

To enhance power, we suggest that researchers assessing
treatment efficacy in dyslexia could exploit the advantages of
estimating individual parameters with precision, like in the
single-case experimental designs (e.g., Krasny-Pacini &
Evans, 2018), but keeping the focus on the population-level
effects. Using stable and reliable reading measures that ensure
high pretest—posttest correlation is important. However, fur-
ther benefit may come from collecting several measurements
of reading performance both pre-treatment and at post-
treatment for all participants. We showed that, under reason-
able assumptions, even three distinct measurements at pretest
and three measurements at posttest, analysed using mixed-
effects models, may crucially increase power.

In conclusion, increasing power when testing treatment
efficacy is challenging, but small effects may still be detected
reliably, even with modest samples. We chose to focus on the
treatment of dyslexia because of the increasingly large body of
literature in this field and because reading ability is relatively
easy to assess. However, all considerations presented here
could be extended to other types of learning disorders (e.g.,
dyscalculia), or even to other neurodevelopmental disorders.
In fact, outcomes different from reading may be more difficult
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or time-consuming to collect repeatedly at each time point.
Many measures in the psychological research present even
lower reliability than reading measures (e.g., mathematics or
other related fields), however, meaning that the benefit of
increasing precision by collecting several repeated observa-
tions, as suggested in the current report, might be even larger
in areas outside the reading research. In any case, a priori
design analysis, including the discussion and formalization
of all expectations about the phenomenon at hand, is funda-
mental. For complex designs such as those described in this
article, we suggested running ad hoc simulations to maximize
flexibility. Finally, whatever a priori assumptions are made,
all parameters formalized in the design analysis (e.g., pretest—
posttest correlations) should later be checked against the em-
pirical data. Should any large divergence emerge, the design
analysis may need to be reconsidered and adjusted
retrospectively.
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